四川盆地及鄂尔多斯远震体波层析成像研究

来源 :中国地震局地球物理研究所 | 被引量 : 0次 | 上传用户:tuifei213
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
青藏高原周缘被坚硬的克拉通所包围,其北部为塔里木盆地和阿拉善块体,东部为四川盆地和鄂尔多斯块体,在边界处形成了复杂的接触构造关系,构造活动强烈。四川盆地西侧分布着一系列大型活动断裂,例如龙门山断裂及鲜水河断裂等,历史上发生过一系列中强地震,造成了重大经济损失及人员伤亡。鄂尔多斯块体内部长期以来地震活动性微弱,其周缘地震活动性强烈。因此这些地区一直受到了我国地球物理学领域的重点关注。四川盆地和鄂尔多斯块体在青藏高原物质东向挤出过程中扮演了重要的角色,研究这些地区的上地幔速度结构对于认识青藏高原周缘动力学过程以及探讨地震活动背景具有重要意义。前人在四川盆地及鄂尔多斯地区开展过一系列层析成像研究,但受限于这些地区以往稀疏不均的台站分布,射线覆盖较差,成像分辨率相对较低。四川盆地内部台站较少,以往的研究中通常仅利用固定台站的资料,横向分辨率大多在0.8°×0.8°以上,只能分辨出较为粗略的上地幔速度结构;鄂尔多斯块体内部以往同样缺少密集的观测台站,成像结果横向分辨率较低,且对于鄂尔多斯块体下方高速异常的形态分布存在较大的争议,影响了我们对于该地区岩石圈结构及其稳定性的认识。为了进一步研究四川盆地及鄂尔多斯地区的构造演化及动力学过程,近些年来,中国地震局地球物理研究所在这些地区开展了一系列大规模密集流动地震台站观测,这些流动台站的布设大大提高了研究区内的台站密度,为获取更高分辨率的上地幔三维速度结构提供了可能性。中国地震局地球物理研究所吴建平课题组于2014年10月至2016年12月在四川盆地内部布设了25个宽频带流动台站,其观测时间超过了两年。中国地震台阵探测第三期的472个流动台站从2016年开始布设在了鄂尔多斯块体内部及华北克拉通中部块体,极大改善了这些地区以往稀疏的台站分布。本研究充分利用了研究区内新布设的流动地震台站以及已有固定台站的观测资料,使用到了四川盆地地区台站记录到的747个远震事件,以及鄂尔多斯地区台站记录到的404个远震事件,采用远震P波走时层析成像方法,获取四川盆地及鄂尔多斯地区的上地幔三维速度结构。新的成像结果横向分辨率在研究区的大多数地区可以达到0.5°×0.5°水平,相较以往的成像结果有了明显提升。本研究在远震体波走时层析成像研究中考虑了浅表沉积层和震源分布不均匀性的影响,成像效果获得了改善。四川盆地及鄂尔多斯地区的沉积层较厚,其影响不可忽略。计算走时残差时基于IASP91模型,但该模型不包含沉积层的速度及厚度,因此计算出的走时残差中可能包含了一定误差。为了减小沉积层带来的影响,本研究从CRUST1.0模型中提取出了研究区的沉积层模型,将其与IASP91模型相结合,以此来校正走时残差,使其包含射线在沉积层内的走时。此外,实际使用到的地震台站及远震分布往往不均匀,尤其远震事件通常在研究区东南方向分布较为密集。这种台站与地震分布的不均匀性导致射线分布不均,最终成像结果会向台站及地震分布密集的方向发生拉伸变形,使得成像效果较差。为了改善台站及地震分布不均带来的不利影响,将包含台站和地震的地区分别划分为一系列网格,通过调整每个台站和地震在计算中所占权重,来减小分布过于集中时对成像结果造成的影响。将上述方法应用于四川盆地及鄂尔多斯地区,获得了上地幔精细速度结构,结合以往的层析成像及其它地球物理学研究成果,对研究区内的构造演化及动力学过程进行了探讨,获得的主要结果及认识如下:四川盆地位于青藏高原以东,其周围分布着新生代以来经历了复杂变形和隆起的山脉。迄今为止,大多数速度模型认为四川盆地下方存在一个很深的克拉通根,坚硬的块体阻挡了青藏高原地幔物质的向东挤压。区别于以前的结果,本文成像结果显示出了向东和向东南倾斜的高速异常,这些四川盆地的高速异常从150 km向东延伸到了上地幔约至400 km深度。我们推测,扬子块体的东南向俯冲发生在中生代,并可能在新生代被重新激活。俯冲产生了四川盆地以东相对较弱的岩石圈,作为青藏高原的东向扩展的响应,湘黔鄂褶皱带和川东褶皱带出现了地表隆起。青藏高原东缘下方局部地区存在向西倾斜的高速异常,它可以解释为岩石圈拆沉。该拆沉现象可能导致了贡嘎山及其周围高海拔山峰的形成,并可能加速了鲜水河断裂带的形成以及青藏高原的横向挤出。在东秦岭造山带下,青藏高原物质的向东挤出并不明显,这表明四川盆地以北的水平向岩石圈挤压较弱。在本研究成像结果中,鄂尔多斯下方存在一较厚的高速异常,其深度在西部约为180 km,北部为100 km,中部及东部的部分地区可达300 km,表明鄂尔多斯块体在整体上仍然保持着克拉通稳定性。鄂尔多斯北部的岩石圈相对较薄,可能与地幔上涌对岩石圈的加热和改造有关。鄂尔多斯西部的岩石圈变薄可能受到了青藏高原东北部相对较热的上地幔物质横向扩张的影响,岩石圈地幔可能已经受到了部分改造。华北克拉通东部、华北克拉通中部和鄂尔多斯块体东北部的上地幔存在大范围的低速异常,这可能与太平洋板片的后撤、滞留板片的脱水以及板片前缘的局部地幔对流造成的伸展构造背景有关。地幔对流向岩石圈底部传递热量,在该地区的伸展背景下,岩石圈或软流圈的熔融物沿着软弱带上涌,形成了包括大同火山在内的火山群。
其他文献
合成孔径雷达(SAR)拥有全天候、全天时的观测能力,在震害评估中发挥重要作用,随着SAR成像技术的发展,其影像空间分辨率也在不断提高,逐渐成为提取震害信息的主要数据来源之一。基于多时相SAR数据提取震害建筑物信息的方法可获得较为准确的结果,但有时由于难以取得有效数据,使得数据处理更加复杂,因此利用震后单时相SAR数据开展震害建筑物的倒塌评估已成为地震应急过程中必不可少的方式。SAR影像中存在的特征
川藏铁路位于我国四川盆地西部和青藏高原地震构造区中部,受青藏高原隆升影响,该区域是我国目前现代构造活动最为活跃的地区之一,区内地震活动强度大、分布范围广、震源深度浅、灾害效应显著。面对地震灾害对川藏铁路施工建设及安全运营的潜在威胁,对铁路沿线进行地震危险性分析,给出合理的地震区划是十分必要且迫切的。目前我国使用的第五代地震区划图采用的是地震活动满足泊松分布、震级-频度符合G-R关系的面源模型,但大
地震是人类面临的重大自然灾害,有效的地震预测是减轻地震灾害的重要保证。中国等一些地震多发国家相继开展了有计划的地震预测研究,50多年来国内外相关研究尽管取得了很大的进步,但地震预测仍然是尚未解决的世界性科学难题。其原因是因为地震孕育、发生的物理过程极其复杂,并且强震震源位于人类目前不可直接观测的地下深处,因此无法利用像数值天气预报那样的方法来进行地震预报。因此,基于地震活动性的统计学方法仍是目前地
中国首颗地球物理探测卫星“张衡一号”(以下简称ZH-1)可获取电磁场、电离层等离子体以及带电粒子空间环境的全球数据并重建全球地磁场和电离层环境及其动态模型,其中的电离层等离子体原位观测载荷之一——朗缪尔探针(Languire Probe,以下简称LAP),可以提供原位电子密度、电子温度观测数据,是ZH-1卫星电离层等离子体原位观测数据的主要数据源。通过前期对ZH-1卫星LAP载荷原位电子密度观测数
厚层第四系堆积区(盆地或平原等)发震断层多以隐伏活动为主要特征,基于上断点的传统活动断层探测技术通常难于约束断层最新活动性质和时代。利用冲积河流对地表形变的敏感性评估断层活动性,是极具潜力的隐伏活动断层研究方向。借助3S技术识别河型异常,可为活动断层的空间展布和性质提供定性和定量依据。本文通过多期遥感影像提取小浪底水库建设前后(1990~2013年)黄河郑州-济南段河道面状水域多期次几何特征,按河
川滇菱形块体前锋部位是指川滇菱形块体的东南部边界,由近南北向的小江断裂带和北西向的滇东南弧形构造带共同组成。该地区地震活动多发且地震强度大,强震活动强烈,为地震学的研究提供了充足的地震资料。研究区内历史上曾经发生1733年8月2日东川紫牛坡73/4地震、1833年9月6日嵩明杨林8级地震和1970年1月5日云南通海7.8级地震,造成了巨大损失。1970年以来发生了 1988年11月6日云南澜沧-耿
五大连池火山是中国东北地区比较典型的新生代板内火山之一,其西侧是大兴安岭构造带,北侧是小兴安岭隆起区,南侧是松辽盆地,火山区主要由北东向断裂控制,沿着这些断裂分布有14座火山锥:南格拉球山、北格拉球山、卧虎山、药泉山、笔架山、老黑山、火烧山、尾山、东焦得布山、西焦得布山、东龙门山、西龙门山、小孤山、莫拉布山。据史料记载,老黑山和火烧山火山在1719年-1721年有过喷发活动。然而,大地电磁结果显示
下午课前在班上发现窗帘被学生弄坏了,于是就展开调查,产生了询问、处理"窗帘"事件以及学生家长来学校维修"窗帘"等一系列事件。
近日,为贯彻落实《国务院办公厅关于以新业态新模式引领新型消费加快发展的意见》(国办发[2020]32号)部署要求,国家发展改革委等28个部门和单位联合印发了《加快培育新型消费实施方案》(以下简称《实施方案》)。为便于各方面准确理解政策内容,扎实推动政策措施落地见效,国家发展改革委、工业和信息化部、商务部、文化和旅游部、国家卫生健康委、市场监管总局等部门有关负责同志回答了记者提问。
期刊
基于性能的方法确定重大工程的设计地震动参数已经逐渐成为一种主流方向,而面向一般建筑的基于(倒塌)风险的地震动参数区划也将是未来地震区划的必然发展趋势。通过基于性能或基于风险的方法确定设计地震动参数,可以有效的保证所设计的建筑结构在未来一定年限内具备预期的风险或性能。然而,目前关于基于风险或性能的地震动参数确定方法在我国的研究与应用却十分匮乏。本文针对这一问题,从以下几个方面开展了相关研究。首先,当