高低α晕族恒星的钡铕元素丰度及其核合成过程分析

来源 :河北师范大学 | 被引量 : 0次 | 上传用户:uj_mosquito12
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
恒星的元素丰度及其特征是我们追踪恒星形成和化学演化的有效探针。Ba元素和Eu元分别是慢中子俘获过程(s-过程)和快中子俘获过程(r-过程)典型的代表元素,其丰度比[Eu/Ba]可作为研究恒星元素核合成过程的一个很好的示踪器。另外,Ba元素的奇同位素(135Ba和137Ba)主要由r-过程产生,而偶同位素(134Ba、136Ba和138Ba)主要由s-过程产生,因此,其奇、偶同位素的相对比例一定程度上代表了r-过程和s-过程对Ba丰度的相对贡献。由此,我们可以根据Ba的这一元素特征追踪r-过程和s-过程核合成历史,研究其可能的产生场所,进而研究恒星的形成演化和起源。  我们基于MAFAGS不透明度采样恒星大气模型,分别在局部热动平衡(LTE)和非局部热动平衡(NLTE)下,采用光谱综合法分析了40颗晕星(包括13颗低α晕星和27颗高α晕星)的Ba和Eu的元素丰度,观测光谱分别取自欧南台(ESO) VLT/UVES释放的光谱数据和北欧光学望远镜(NOT)及其光纤阶梯光栅摄谱仪(FIES)的光谱数据。并且考虑到奇偶同位素对BaⅡ共振线λ=4554(A)超精细结构的影响,通过拟合该谱线的轮廓利用x2最小方法确定了Ba元素奇偶同位素的最佳比例,据此来推算r-过程和s-过程对Ba元素丰度的相对贡献。  我们的分析结果表明:  (1) Ba元素丰度存在一定的NLTE效应,NLTE的丰度修正平均为-0.06dex,且基本与金属丰度无关,但不同的谱线的NLTE效应是明显不同的,其中λ6496(A)的NLTE效应最强,其丰度修正值平均为-0.15dex;其次是λ5853(A),其NLTE丰度修正值平均为-0.03dex;λ6141(A)受到的NLTE效应最弱,其丰度修正值平均为-0.002dex。  (2) Eu元素丰度存在明显的NLTE效应,对不同金属丰度的恒星其NLTE丰度修正最小为0.03dex,最大到0.12dex。  (3)高α和低α晕星的[Ba/Fe]丰度不能明显区分开,但[Eu/Fe]丰度却表现出了明显的区分,低α晕星的[Eu/Fe]反而高于高α晕星,并且在NLTE下这种区分度更加明显。  (4)低α晕星的Ba丰度大部分是r-过程和s-过程共同的贡献,但总体上r-过程的贡献比例更大,有的甚至是纯r-过程的产物。而高α晕星的Ba丰度的核合成机制则更为复杂,既有来自纯r-过程的贡献,也有几乎是纯s-过程的贡献,当然更多的来自s-过程和r-过程的共同贡献,但二者的相对贡献相对低α晕星来说更为不确定。  综合上述结果,我们认为高α和低α晕星可能有不同的形成场所,但是二者的产生场所都并不单一,高α晕星可能既有“本地形成”(In situ)也有来自年老厚盘“被踢出”(Kicked-out)的形成机制,而低α晕星也不仅仅来自于矮星系的“吸积”(Accreted),很可能是三种起源的某种混合,甚至还可能有其他的来源。
其他文献
理论和观测结果对比表明:宇宙中绝大部分物质是不发光的,且这些物质无法使用光学观测方法观测。通过对引力透镜的研究可以得到透镜天体的引力场的物质分布情况。当前弱引力透
宇宙线物理是一门较为年轻的学科,为人类研究高能粒子提供了直接样本。宇宙线能谱大致可以用一个幂率谱来描述,在4PeV处出现拐折,称为膝区。能谱指数由原来的-2.7变到-3.1。能谱
在实验室和空间等离子体中,人们都观测到超热粒子,并发现等离子体的分布函数是偏离麦克斯韦分布的。超热粒子的存在使分布函数有一个高能量的尾巴,这种分布可以用洛伦兹kappa
大量的天文学观测表明宇宙中存在着一种不能被直接观测且具有排斥力的能量,称为暗能量,它占宇宙总能量的73%左右。广义查普瑞金宇宙模型作为暗能量模型之一受到了人们的广泛讨论
本文介绍相对论框架下的Slim盘的动力学和出射谱的研究。Slim盘是对于相对高吸积率的天体适用的一种吸积盘模型。我们采用完全广义相对论的方程分析了Slim吸积盘的动力学性质
post AGB星已经完成了AGB星全部演化过程,它的元素丰度分布清晰的显示出AGB星最终的演化结果,分析它的元素丰度特征对于研究AGB星的形成及演化过程具有极其重要的地位。post AG
M型矮星(0.08M⊙<M<0.8M⊙)是小质量的低温恒星,其数量众多,占据着大部分银河系的质量。由于其质量低,所以寿命很长,且其形成遍布银河系的各个演化时期,可以反映初始形成时的各种信
星系中心黑洞质量与核球性质的相关性是最近十年来星系研究最重要的发现之一。它揭示出恒星形成与黑洞共同增长足理解星系形成和演化的一个关键问题。星系恒星形成理论和观测