论文部分内容阅读
微生物细胞工厂可以利用廉价生物质生产多样的化学品,其合成能力的指标,如产量、产量和生产强度往往取决于胞内代谢流的流量、流向和流速。因此,调控碳代谢流是构建高效微生物细胞工厂的关键。在提高微生物化学品合成能力的过程中,普遍存在合成路径中碳流量调控精度低、细胞生长和产品合成之间的碳流分布难以平衡、调控工具的智能性、时效性和通用性差等问题。本论文以E.coli为研究模型,从合成生物学和系统代谢工程的角度,提出了体外模块优化整合CRISPRi、动态统合加工、蛋白酶为基础基因回路等策略,有效提高了苹果酸、木糖酸、莽草酸等有机酸的生产指标。主要结果如下:1.以E.coli B0013为出发菌株,通过体外构建、模块优化苹果酸非循环氧化乙醛酸合成路径,获得了五种路径酶的最适催化比例;利用基因组合敲除的方式,构建了一株能积累5.30 g L-1苹果酸的底盘工程菌株E.coli B0044;通过筛选、组装靶向路径酶的不同抑制强度的向导RNA,并利用CRISPRi技术对路径酶进行理性调控,获得了最优工程菌株E.coli B0047。最终通过补料分批发酵生产36 g L-1苹果酸,得率为0.74 mol mol-1葡萄糖。2.通过筛选不同来源的木聚糖降解酶和木糖转运蛋白,并进一步模块优化,获得了具有高效木聚糖利用能力的E.coli;进一步的,经过整合、优化群体感应QS系统和重组酶Cre系统,构建了一个细胞密度依赖型的新型动态调控开关,展示出良好的可调性和可移植性;最终通过组合上述两个系统,提出了微生物动态统合生物加工技术。利用该技术,工程E.coli以20 g L-1木聚糖为底物分别生产出16.8 g L-1木糖酸,11.8 g L-1木糖醇和3.2 g L-1莽草酸。3.通过组合蛋白酶和蛋白降解信号,构建了两种基本的蛋白调控单元。两个调控单元的最大调控倍数均超过20倍,展示出良好的可调性和特异性;在此基础上,GPP控制靶蛋白的表达,SPP控制蛋白酶的表达,设计出转换时间分布于7-10 h的pbDRC分子生物开关;同时表达两种具有正交切割活性的蛋白酶(TEVp,TVMVp)或者利用蛋白酶的级联降解,构建出pbI分子生物开关;使用三种具有正交切割活性的蛋白酶(TEVp,TVMVp,SuMMVp)级联降解,首次在蛋白水平构建出震荡周期为90 min,具有生物功能的振荡器pbO。4.以莽草酸激酶为靶点,研究了pbDRC对菌株在不添加芳香族氨基酸和诱导剂的无机盐培养基中生产莽草酸的影响。在摇瓶水平,最优菌株E.coli DS7的莽草酸产量达2.14 g L-1;补料分批发酵,72 h可以积累12.6 g L-1莽草酸,比摇瓶水平提高了5.9倍,得率达0.19 g g-1葡萄糖;在其他E.coli中测试pbDRC,莽草酸产量分别较对照组提升7-43倍;在基因组水平上引入pbDRC,莽草酸产量分别较对照组提升4-9倍,且未积累乙酸。5.以PTS系统为靶点,研究了pbI对缓解碳代谢阻遏的影响。利用逆变器可以改变菌株对葡萄糖利用情况。最佳的诱导剂添加时间是6 h,在此条件下,当底物含20 g L-1葡萄糖和10 g L-1木糖时,含有逆变器的菌株可以积累4.25 g L-1木糖酸,较对照组的2.37g L-1产量,提高了1.79倍。6.以酯水解酶为靶点,研究了利用pbO调控双酶级联反应速率对生产木糖酸的影响。在摇瓶水平上,含有pbO系统的菌株较对照组木糖酸产量提高2.02倍;且在胞外pH=4的情况下,保持了胞内的pH稳态;相较于对照组,含有pbO的菌株单位菌落形成单位提高了两个数量级;经过发酵条件优化,在TB培养基,37°C条件下,木糖酸的摇瓶产量达13.1 g L-1;经补料分批发酵,木糖酸的生产强度达到7.12 g L-1 h-1,产量达199.4 g L-1。