航空复材图像中的复杂直线提取技术研究

来源 :四川大学 | 被引量 : 0次 | 上传用户:A312685521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳纤维复合材料(Carbon Fibre Reinforced Plastic,CFRP)具有质量轻、热膨胀系数低以及耐腐蚀等优良特性,在航空设备建造领域被广泛使用。由于该材料具有各向异性,使用时需要按照预设铺层方向准确铺设才能最大限度发挥其性能优势。但CFRP表面图像背景复杂、分界模糊,而且图像中没有明显的线条,因此难以利用传统的直线提取方法从中获得直线信息以确认材料方向。CFRP纹理图像中存在一些分散的小区域,这些区域在视觉上表现为断裂的直线,可以将这些具有直线模式的离散区域定义为复杂直线。结合成都某飞机工业集团的科研项目需求和具有直线模式的离散区域特性,本文提出了一种基于中心线拟合的直线提取方法,实现了航空复合材料图像中的复杂直线提取,从而获取CFRP方向信息。实验表明,利用本文提出的方法可以有效地识别出航空复合材料图像中的复杂直线特征,实现了复材方向检测,且检测精度充分满足工程需求。针对以上问题,本文主要工作如下:(1)针对航空复合材料图像的背景复杂性,根据不同二值化方法的处理效果,利用自适应二值化方法对航空复合材料图像进行处理,同时通过实验分析了自适应二值化方法中各参数对二值化结果的影响。实验表明,利用该方法可以有效地对复杂背景下具有直线模式的离散区域进行初步提取,保障后续复杂直线特征提取工作的开展;(2)针对航空复合材料图像中的区域离散问题,提出了基于形态学的Steger中心线提取算法:利用形态学方法将离散区域图像扩大并连接,并提出利用Steger中心线提取算法识别膨胀图像的线特征。通过中心线提取实验,验证了本文算法对航空复材图像中复杂线特征提取的有效性;(3)针对传统方法无法提取航空复合材料图像中的复杂直线特征问题,提出了一种基于中心线拟合的复杂直线特征提取方法:设计了基于连通域判断的线交叉点判别方法,并基于此提出了交叉点切割拟合算法,在中心线提取基础上进行直线拟合,实现复杂直线特征提取。最后通过控制拍摄条件和增加遮挡物来采集不同航空复合材料图像进行实验,验证了本文算法对于复杂直线提取的有效性和抗干扰性;量化分析显示,最终提取直线的角度偏差在0.4°以内,该精度可以充分满足航空复合材料制造偏差不超过±3°的要求。
其他文献
运动目标检测是许多视频分析应用中的关键步骤。由于真实视频数据通常存在相机抖动、光照变化和恶劣天气等复杂情况,导致基于背景减法的目标检测算法可能无法有效对背景信息建模,严重影响目标检测效果。因而具有鲁棒效果的鲁棒性主成分分析(Robust Principal Component Analysis,RPCA)在目标检测领域得到广泛应用。虽然RPCA模型被成功应用于目标检测领域,但是在经典RPCA模型中
科学文献是科研人员通过实验对自然科学现象进行充分观察或研究后,对成果与结论的书面表达。海量科学文献的发表使科学的结构不断发展与完善,对科学发展中的重要影响因素进行深入了解可以有效地解决环境、社会和技术问题。通过分析科学文献数据,揭示学科主题结构及发展历程,对理解学科特点、发现新兴研究以及预测未来趋势至关重要。围绕科学文献,现有研究只关注学科框架的构建或单研究领域的主题分析,缺少完善的从学科层级自顶
基于代理的建模技术经常被用于研究复杂的多细胞生物学现象,这一技术在生物医学研究中发挥着重要的作用。近年来通过建立仿真模型研究癌症发育的过程,推测癌细胞转移时机成为了一个重要的研究方向。现有的研究证明,癌细胞的转移扩散是导致癌症患者死亡的主要原因。对于目前发病率较高的结直肠癌,肝脏是其常见的转移靶器官。因此本文利用基于代理的建模技术对结肠癌的肝转移过程展开具有针对性的研究。本研究能够评估疾病进展,为
随着2018年国家标准《智慧校园总体框架》发布,致力于构建校园工作、学习和生活一体化的智慧校园正在全国多个高校逐步成型,从课堂到生活的教育理念已经被广为接受。传统基于预制定教学计划的培养模式已不能满足当前创新性人才的个性化培养需求。以大数据分析、人工智能等信息技术为支撑的智慧教育模式已成为教育信息化的趋势,通过掌握学生的兴趣、爱好、生活习惯等,提高人才培养质量成为当前教育数据挖掘领域的重要研究问题
在计算机三维动画领域中,通过模拟类似脂肪等软体的动态效果,能为模型形变带来更丰富的视觉效果。传统的模拟软体形变的方法受限于复杂的物理计算,往往需要昂贵的时间成本。近年来,位置动力学因其简单快速的物理模拟框架,被大量应用于实时应用中。位置动力学方法通过对模型的粒子系统施加形状匹配等约束来控制粒子间的位置关系,模拟软体的形变。在实际的计算过程中,位置动力学方法通过高斯赛德尔迭代来计算模型约束集合的近似
鲁棒性和数据稀疏问题已经成为推荐系统研究中的两大热点问题。鲁棒性推荐旨在从有噪声的用户数据中捕捉用户的真实偏好,提供准确且稳定的个性化推荐。数据稀疏问题是指,相对于推荐系统的海量用户和商品,每个用户交互过的物品仅仅是商品总量的很小一部分,这导致依赖于用户历史数据的推荐模型难以准确捕捉用户的个性化偏好。尽管现有工作已经对这两个问题进行了研究,但推荐系统的鲁棒性问题和数据稀疏问题仍未得到很好的解决。现
信息抽取任务旨在从非结构化文本中自动抽取信息,并转换为结构化的三元组(实体-关系-实体)。根据三元组中的关系类别是否限定,信息抽取任务可以分为封闭域和开放域两类。其中,开放域信息抽取不限定三元组中的关系类别,从文本中抽取所有可能的三元组,为问答系统、信息检索和知识库构建等自然语言处理任务提供有力支持。目前开放域信息抽取工作大多在句子上抽取三元组,但在结构复杂的句子上学习抽取模板、制定抽取规则具有极
用户界面作为向用户传递信息的直接桥梁,需要将界面中的信息合理地展现给用户。线框图是基于信息架构设计的,既能反映出信息架构的信息规划,又是信息架构的具体表现,可以说线框图已经确定了产品界面的雏形。然而合理布局信息元素、绘制高质量的线框图需要设计者具有长期的经验积累。参考符合信息架构的界面设计样例可以帮助设计者设计线框图,基于信息架构进行界面检索,可以帮助设计者在线框图设计阶段收集相似信息架构的界面设
基因相似分析不仅可以提供有关基因生物学作用和功能的信息,还可以揭示各种基因之间的关系。现有的基因相似分析工作主要基于基因的序列特征、本体功能注释特征以及关联信息特征进行。然而,这三类方法通常以定量的方式度量基因的相似性,存在度量标准单一的问题;通常直接对相似性度量的定量结果进行比较,以此进行相似分析;此外,还存在忽略不同语义条件下相似度量结果不同的问题,使得基因相似分析结果偏颇。对此,本文提出了一
法医牙科学是法医学中一个重要的分支,其可以通过牙齿图像进行个体身份的鉴定(以下简称为牙齿识别)。在法医学领域,利用计算机技术辅助进行牙齿识别不仅具有很高的理论价值,还具有巨大的应用价值。然而,现有的传统数学方法仅适用于小型牙齿数据库,容易受到牙齿图像质量、牙齿形态变化等因素的影响。本文在前期工作中提出了基于可学习连接与注意力机制的牙齿识别网络LCANet,取得了较好的识别效果,但发现其仍存在不足,