非均匀环境中的几类反应扩散模型研究

来源 :兰州大学 | 被引量 : 0次 | 上传用户:youngpansy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
理论生态学的基本目标是了解生物个体之间以及与环境之间的相互作用如何决定种群的分布和群落的结构.特别地,非均匀环境在维持生物多样性方面发挥重要作用.反应扩散模型为研究非均匀环境影响种群动力学提供了一个良好的框架.本文旨在研究反应扩散模型在生物学中的应用,具体分析三类空间非均匀环境中的反应扩散模型,重点考虑非均匀环境对种群动力学、物种进化、疾病传播等的影响.第二章,我们研究一类非局部反应扩散对流系统,用来模拟富营养环境中双物种竞争的浮游植物的种群动力学,这里的富营养是指营养物是充足的,浮游植物的生长只受光照的限制.我们首先说明由于非线性项的非局部性,系统不保持逐点意义下的竞争序关系.然后引入一个特殊的锥K,它是关于种群密度的累积分布函数,并给出非局部竞争系统的上、下解的广义概念,其中的微分不等式是在锥K意义下成立的.进一步,我们对这样的上、下解建立比较原理,这意味着系统关于锥K诱导的序是单调的.作为应用,我们研究单物种模型和双物种竞争系统的全局动力学.关于单物种模型,证明了正周期解的存在唯一性和全局渐近稳定性.关于双物种模型,我们研究有关半平凡解稳定性的线性特征值问题,并对一些特殊情形,分析了扩散和对流对双物种竞争结果的影响,这蕴含着浮游植物运动策略的演化.第三章,基于前面得到的单调性结果,我们研究一般情形下非局部双物种浮游植物模型的全局动力学,主要分析扩散和对流对浮游植物竞争结果的共同影响.我们对两个半平凡解的局部稳定性进行充分的分析,并建立共存解的不存在性,从而应用单调动力系统理论,得到系统的全局动力学.结果表明,扩散和对流的结合将导致复杂的动力学行为,包括竞争排斥和共存.对流速率的变化可能导致不同竞争结果之间的转变,这意味着浮游植物种群的群落构成可能随着对流速度的改变而变化.第四章,研究n维周期等方向演化区域上扩散的logistic方程.我们首先推导出演化区域上的模型方程及特征值问题.然后证明若物种的扩散率d小于临界值D0,则物种可持续生存;若物种的扩散率d大于临界值D0,则物种灭亡.最后,我们分析了区域演化对物种持久性的影响.具体来说,这依赖于平均值ρ-2,其中ρ(t)是区域演化率且ρ-2=1/T ∫0 T 1/ρ2(t)dt.若ρ-2>1,则区域的周期演化对物种的持久性有消极影响;若ρ-2<1,则区域的周期演化对物种的持久性有积极影响;若ρ-2=1,则区域的周期演化对物种的持久性不产生影响.我们给出了数值模拟进一步验证理论分析结果.第五章,研究时空非均匀环境中的反应扩散对流SIS传染病模型.我们首先引入模型的基本再生数R0,并建立关于R0的阈值动力学.其次,分析R0的一些一般的定性性质.最后,研究特殊情况下,即γ(x,t)-β(x,t)=V(x,t)关于空间变量x单调时,对流和感染者的扩散对基本再生数R0的影响.我们的结果表明,若Vx(x,t)≥ 0,(?)0且V(x,t)只关于x变号,则对流有利于消除疾病;若Vx(x,t)≤0,(?)0且V(x,t)只关于x变号,则对流不利于疾病的消除.感染者的扩散对疾病传播的影响依赖于环境是高危险区域还是低危险区域.
其他文献
学位
大气粉尘不仅响应于全球变化,也是全球气候系统变化的主要影响因子之一。粉尘的释放、输送和沉降等过程与源区气候环境状况、风场强度以及环流格局等密切联系,因此,过去大气粉尘变化对于理解区域气候环境变化及其驱动机制具有重要意义。中亚干旱区是北半球重要的粉尘源区,是研究过去大气粉尘变化的理想区域。泥炭堆积连续性较好,分辨率较高,易于测年,且泥炭矿物碎屑受沉积后成岩、迁移等过程的影响较小,是重建过去大气粉尘变
学位
学位
阶为素数幂的群称为有限p群.有限p群是有限群的一个重要分支,近年来越来越多的群论学者开始关注有限p群,其中计数问题是有限p群的一个重要研究课题.在研究计数问题方面P.Hall做出了重要贡献,他证明了δk(G)三0(mod pd-k+1),其中G是有限p群,δk(G)表示G的指数为pk且不包含Φ(G)的子群个数,1≤k≤d=d(G),d(G)表示G的极小生成系中生成元的个数.本论文是基于该结果来研究
本文主要利用solid码和句法同余研究语言.首先,在l(S)上定义运算*,其中S为字母表A上一 solid码.证明了(l(S),*)为一幺半群,并对其幂等元和正则元进行了刻画.其次,给出简单的新方法证明:由solid码S确定的同余σs为Λ*上的主同余.同时,利用solid码S定义了Λ*上的另外两个同余λS和ρs,并证明它们也是主同余.再次,讨论了稀疏语言与r-析取各层次语言相乘的情况.证明了:若稀
学位
本文主要研究弱耗散波方程解的整体适定性及其长时间动力学行为.首先,本文在局部一致空间中讨论了R3上自治超三次弱阻尼波方程(1)的初值问题,利用有界域上线性波方程的Strichartz估计证明了方程Shatah-Struwe解的整体存在性和唯一性.由于区域的无界性、非线性项的超临界增长以及方程本身的特性带来的困难,我们发展了[32,48,73]中“收缩函数”的思想方法来证明方程(1)的渐近紧性.进一
学位
学位