论文部分内容阅读
地铁车辆的传动系统是把来自动力源的电能转化为机械扭矩并通过传动环节传递到轮对以产生牵引力,它包括牵引电机、齿轮传动系统及相应的传动环节和轮对。在轨道不平顺和传动系统本身激励的作用下,会对电机的振动产生非常严重的影响。在实际情况中,也经常会在电机吊座处出现裂纹,导致电机无法正常工作甚至出现“机破”。虽然以前对传动系统做了大量的工作,但是在实际运行中还是出现了问题。因此,进一步地研究传动系统的振动情况具有迫切而重要的意义。首先,本文将车辆系统动力学与齿轮系统动力学的知识相结合,建立了地铁车辆传动系统的数学模型。为了建立齿轮动力学模型,本文利用的瞬态动力学模拟仿真出大、小齿轮的动态啮合时的时变刚度,并以此可以作为在ADAMS/Rail中Torsion spring的输入刚度。以北京地铁B型车辆为研究对象,运用多体动力学仿真软件ADAMS/Rail建立了带传动系统的地铁车辆仿真模型。其次,本文主要仿真在无不平顺的直线轨道、曲线轨道和美国五级谱轨道的直线路三种情况下的电机振动的情况,并对产生的原因进行分析。最后,本文通过改变电机悬挂三个方向的刚度和阻尼参数,并以减少电机的振动加速度为目标,采用ADAMS/Rail仿真软件进行模拟仿真。通过改变电机垂向悬挂刚度和阻尼,得到电机的垂向刚度4×107N/m和阻尼1.2×106N·s/m较为合理。通过改变电机横向悬挂刚度和阻尼,得到了电机的横向悬挂刚度为4×105N/m较为合理,悬挂阻尼为4×103N·s/m较为合理。通过改变电机纵向悬挂刚度和阻尼,得到了电机的纵向悬挂刚度为4×105N/m较为合理,悬挂阻尼为1.2×104N·s/m较为合理,对比优化后的电机悬挂参数也保证了车体的平稳性。图90幅,表14个,参考文献40篇。