基于分布式搜捕算法的多无人机协同编队队形控制研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:chen_chen1111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着单无人机向多无人机协同技术的发展,多无人机应对不同需求实现编队控制的应用场景增多。相对单无人机,多无人机能够携带不同设备,完成单无人机无法完成的任务等优点,目前的多无人机编队控制仍有协同能力低,自主能力不足,无法应对突发情况,实时性低等问题,无法满足不同飞行任务对编队队形控制的要求,因而展开关于群体智能控制方向的多无人机编队控制研究迫在眉睫。为解决上述问题,将多无人机协同编队控制问题,分为编队重构和编队控制,引入群体智能算法,以信息交互和决策为基础,设计分布式无人机编队控制算法,旨在提高无人机自组织控制能力,帮助实现多无人机协调平稳的组成目标队形和不同场景下的编队变换控制。针对初始位置随机的编队重构问题,提出一种分布式搜捕算法,建立数学模型和确定任务目标。根据搜捕行为的各阶段任务,将模型分为五个部分,构成决策生成,决策改进,决策确认的信息流。设置状态信息表,协调各无人机之间目标,避免冲突发生,进而实现整个编队决策的一致性。时间标签减轻和消除状态信息回传的影响,提高编队的实时性。融合和校验状态信息表,防止在传递过程中信息丢失,提高编队稳定性。仿真证明编队重构收敛性,通过对比前后运动轨迹,验证状态信息表提升协调能力和时间标签的减轻消除状态信息回传影响。针对初始位置确定的编队变换问题,将其转化为多点对多点的路径规划问题。建立编队变换的数学模型,优化函数以及约束条件,实现“短均少”的路径规划目标。多无人机之间相互博弈,选取目标。通过演绎方式,优化前一时刻状态,将优化过程分为均等优化和交叉微调,对应优化目标“均”和“少”优化多无人机的目标路径。计算变换成新的队形目标。在仿真中演示编队光滑平稳变换到目标队形的效果,和编队重构路径进行性能比较并分析结果。针对多无人机避障协调问题,为了避免无人机之间或与障碍物发生碰撞,本文设计避障协调和改进人工势场法互补的方法。利用状态信息表构成避障协调图,深度优先搜索得出避障块,将避障协调问题转化为编队变换问题。飞往目标时,利用势场法微调,保证无人机之间不发生碰撞。在避障顺序下,避障协调优先级高于改进的人工势场法,增强编队避障的适应能力。
其他文献
分布式多智能体集群运动控制技术,是未来大规模无人机集群搜索、大规模自主编队表演技术、超远距无人机集群中继通信等一系列应用场景的技术基石。如何让分布式集群拥有超强避障能力,更是现有研究中的重点。现有的比较成熟的方案是以建模生物体集群运动为核心出发的,通过将障碍物比作虚拟的智能体来实现避障,这种方案又被称为Flocking算法。但是这种方案只能适合于凸类型和部分非凸类型的障碍物。针对狭窄型的只能允许极
移动边缘计算(Moblie edge computing,MEC)在处理一些新型的计算密集型或时延敏感型的任务时已经展现了其独有的优势。通过计算卸载及服务迁移,用户终端所产生的任务可以由边缘设备进行处理,从而打破了终端设备有限的资源与能量带来的限制。然而,MEC系统的异构性、无线网络环境的动态性以及终端用户的移动性等均给计算卸载及服务迁移策略的设计带来了很大的挑战。本文旨在通过对异构边缘网络中计算
随着无人机技术的不断发展,其所具有的低成本、高灵活性等特点为解决各种实际问题提供了更多的可能性,在环境探测,农业植保等领域都得到了广泛应用。本文考虑一种未知环境探索情形,在全球定位系统受限的情况下,同时定位和建图(Simultaneous Localization And Mapping,SLAM)算法提供了无人机主动飞行的核心技术。在大规模复杂环境中,单架无人机由于其性能和探索范围局限性,不能快
感知技术在交通、军事、农业等领域具备极其重要的使用价值,且在低时延、大容量、高速率的情境下,越来越多的应用场景对环境感知提出越来越高的要求。在感知层面中,目标的检测和跟踪具有举足轻重的地位,其相关的技术成果已渗透到人们生活的方方面面。而当探测环境比较复杂时,使用传统的感知手段和方法来完成目标的检测与跟踪从过程上分析比较复杂,且由于目标具有一定的空间结构,以往的处理方法经常忽略目标的多散射点模型,因
信号的检测与识别被广泛应用于频谱监测、军事电子对抗、信号解密、干扰探测等领域。随着通信环境的日益复杂,传统的单信号识别技术无法应用于电磁干扰严重的信号混叠场景。如何消除干扰、频偏、相偏、衰落等带来的影响,识别出混叠信号中的未知信号源是一个亟待解决的难题。传统的盲信号识别算法识别精度依赖于盲源分离效果,然而复杂通信环境下的非充分稀疏混合信号难以分离,且无法适应环境的动态变化。本文围绕基于机器学习的盲
现代社会亟需新一代的移动通信技术,以满足用户对低时延、广覆盖、高速率的需求。与常用的半双工相比,全双工提高了日渐稀缺的频谱资源的利用率,近年来得到了广泛研究。然而由于全双工在自干扰消除能力不佳时性能不及半双工,混合双工,即全双工和半双工之间进行选择切换成为了研究的热点方向。协作通信是一种将多个无线设备通过协作协议统一控制起来,取得比起独立工作更好性能的通信方式。多个彼此进行协作通信的中继被称为协作
随着信息技术的高速发展,无人智能系统和移动智能机器人已经逐步走入到了人类日常生活中,并在混合现实、应急救援和无人驾驶等任务中发挥着重要作用,其中的关键技术即时定位与地图构建(Simultaneous Localization And Mapping,SLAM)引起了研究者们的广泛关注。视觉SLAM系统以其成本低和容易部署的优势,用于服务人类日常生活的可能性更大,逐渐成为了SLAM系统中的一个研究热
近年来,随着海洋事业的发展,各国对于水声通信系统的研究越来越重视。水声前导信号的检测是水声通信中一个重要模块。前导信号的误检和漏检一方面会导致通信的失败,另一方面还会对水声通信设备的寿命造成影响。而水声信道作为目前最复杂的信道之一,其多径效应严重、多普勒效应明显、干扰种类繁多的特点导致水声前导信号的检测困难。本文从两个方面研究了前导信号的检测和识别问题,并对所提出的方法进行深入的理论性能分析,该理
伴随着移动互联网和人工智能的迅速发展,各类移动终端应用越来越大型化,对于计算资源的需求也越来越高。由于移动终端的设备和体积限制,其计算能力和能耗都无法完美地支撑应用在本地运行。传统的云计算范式在处理计算任务时,通常存在较高的传输时延,因此无法满足时延敏感型应用的时延需求。由此,研究者提出了移动边缘计算,其核心思想是将云计算的部分处理能力下沉至距离用户更近的网络边缘端,从而可以很好的解决以上问题。显
第五代移动通信技术由于其具有满足海量数据的传输的特性,成为了实现万物互联的关键技术之一。而信道编码技术作为其中对抗信道传输干扰的重要手段,编码的性能直接影响了通信领域中的信息传输速率。Polar码作为一种发展时间较短的码字,在第五代移动通信技术的标准制定中成为其增强移动宽带(Enhanced Mobile Broadband,e MBB)应用场景下的短码标准。通过研究发现,虽然Polar码在特定的