宽谱段可见红外一体化光学系统设计

来源 :中国科学院大学(中国科学院西安光学精密机械研究所) | 被引量 : 0次 | 上传用户:JWPMP
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科技的不断进步,各国对空间的探索愈演愈烈。空间碎片对航天器的威胁、间谍卫星对领土的窥探和天基武器的应用等潜在威胁对空间成像技术的发展提出了更高的要求。对天基目标的成像识别主要由空间成像光学系统实现。传统空间成像光学系统使用可见光作为工作谱段,在空间目标成像方面存在不足,对于某些特种材料的目标可能出现观测不足的情况,且在夜晚时段无法实现观测成像,即便对于清晰成像的目标也可能因为形状普遍,难以辨认其核心功能,从而无法实现目标识别。相较于传统可见光成像光学系统,红外成像光学系统由于红外光热成像的特点,可以对空间目标实现全天时全天候的观测,且可以实现目标温度差异化观测,对其内部核心部件及其功能的推测提供有效依据,进而实现空间目标的精确识别。但由于红外光波长较长,难以实现高分辨率成像,导致目标观测不够清晰,识别不够精准。结合传统可见光成像和红外成像的优点,可见红外一体化成像光学系统在环境条件允许的情况下可以同时对同一空间目标多谱段成像,获取其详细信息以实现对其的精确识别;在环境条件不好的情况下也可以发挥传统可见光和红外光学系统的成像观测功能。为了实现对空间目标的复杂信息获取与精确识别,提出了一种宽谱段可见红外一体化光学系统的设计。由应用场景分析出发,选择了合理的光电探测器,之后对光学指标进行分析计算,其后对系统性能进行合理预估,最后采用先设计分系统后进行一体化设计的方式完成了光学系统的设计。该光学系统选用0.45μm~0.85μm可见光谱段、1.0μm~1.6μm短波红外谱段和3.8μm~4.6μm中波红外谱段作为工作谱段。系统采用共孔径一体化校正镜分光的一体化设计形式,共用部分采用R-C结构,分光后分别设置透镜组对像差进行校正,分别利用探测器成像。一体化系统入瞳口径1m,遮拦比小于12.3%;可见光分系统有效焦距9m,相对孔径1/9,像元大小5μm,探测器面阵2560×2560;短波红外分系统有效焦距9m,相对孔径1/9,像元大小15μm,探测器面阵640×512;中波红外分系统有效焦距3m,相对孔径1/3,像元大小10μm,探测器面阵1024×768。以现有标准对设计好的系统进行了像质评价,得到三个分系统的成像质量均满足设计需求和应用标准;对光学系统进行了离焦分析,得到焦深内的点列图和MTF变化均在合理范围内,不影响成像质量;对系统进行了波像差分析得到系统加工面形精度需求;对系统进行了公差分析和公差缩紧,得到了可供现有条件下加工的公差参数;对系统进行了热光学分析,得到在合理温度范围内系统通过焦面调焦维持成像质量不下降;对系统进行了鬼像分析,得到各分系统产生的鬼像均不影响各自的像面成像;最后对系统进行了杂散光抑制设计和杂散光分析,设计了主镜遮光罩、次镜遮光罩和外遮光罩以及挡光环和消杂光光阑,模拟了0.5°~80°范围的杂散光仿真追迹,绘制了各分系统的PST曲线。综合以上结果表明,该系统设计公差分配合理,可靠性好且成像质量高,可以实现对空间目标的复杂信息获取与精确识别,为后期技术分析提供良好的硬件基础。
其他文献
CCD探测器凭借其高灵敏度、宽动态范围以及低噪声等特点广泛的应用于天文观测、航空航天、科学研究和空间碎片探测等领域。传统的CCD相机采用模拟相关双采样电路来降低系统的噪声,该方法可以很好的抑制复位噪声,但其无法对噪声达到最优的抑制。因此探寻新的低噪声CCD相机降噪技术具有重要的研究意义。随着数字滤波技术不断地发展,CCD数字滤波降噪技术作为一种新型的、低噪声CCD信号处理技术,正在逐渐的应用于航空
液压支架立柱由于长期在井下的酸性介质或盐性环境下服役,会出现一系列因腐蚀和磨损导致的失效问题。目前,行业中主要采用电镀的方法来对立柱进行预先防护,但是由于电镀污染重、耗能高,不符合我国绿色发展的路线要求,因此本文针对液压支架立柱的修复与防护这一问题,以27Si Mn钢为研究对象,采用最新的超高速激光熔覆技术,进行了深入的研究与实验,制备出了满足实际工况要求的高性能涂层,具体研究内容与结论如下。(1
无镜头成像技术是一种新型成像技术,其原理是采用光学调制器件代替镜头组直接放置在图像传感器前,从而构建一种超薄的无镜头相机,并配合后期重建算法进行成像。无镜头成像技术在具有大规模部署需求的物联网成像场景以及其他领域有着广泛的应用前景。由于编码掩模制造简易,成本低廉,并易于与图像传感器结合,因此,本文采用编码掩模代替镜头组,构建更轻薄,成本更低的成像系统。到目前为止,基于编码掩模的无镜头成像系统成像质
在计算机视觉的研究领域之中,目标检测与识别占据着非常关键的位置。近年来,伴随着人工智能技术的飞速发展,以及图像数据和视频数据的大规模涌现,目标检测在目标追踪、图像分析、无人驾驶等领域有了广泛应用。本文利用基于显著性和深度学习的两种主流目标检测算法对可见光图像中的多无人机目标进行了检测与识别。基于显著性的目标检测方法中的超复数频域变换模型利用目标的颜色特征构建四元数函数,在频率域对目标进行检测,该模
模仿人类感觉系统的电子皮肤的研究近来引起了广泛关注,在人工智能,医疗保健监测,人工假体和人机交互电子学的应用方面也具有巨大潜力。本文基于压力传感器,选择具有高电导率、稳定的机械性质、较大的比表面积和可弯曲性的碳纳米管作为导电材料。海绵具有三维多孔结构,碳纳米管涂层海绵,制备了一种具有三维多孔结构的压力传感器器件;同时制备碳纳米管涂层海绵电极,制备了一种电容式的压力传感器。本文主要研究内容如下所示:
拉曼光谱技术被称为检测物质成分的“指纹光谱”,它的探测范围广、无需处理样品、拉曼谱峰尖锐、分析能力和处理能力强,是检测物质成分的重要分析方法之一。本文在月球表面物质探测的背景下,分析了拉曼光谱技术应用于月球表面物质探测的一些优势,并且根据前人使用拉曼光谱技术分析月球返回样本的研究,分析了拉曼光谱技术应用于月球表面物质探测的可行性。本文在综合考虑现有拉曼光谱技术的基础上,并根据月球表面的实际探测情况
为解决叶片制造企业在工艺设计与数控编程时存在的数据源不统一、工艺设计效率低以及工艺文件可视化不足等问题,本文将MBD技术引入到叶片工艺设计中,在NX软件平台上开发出一套基于MBD的叶片CAPP-NC系统。本文主要研究内容与成果有:(1)基于MBD的叶片CAPP-NC系统总体方案设计。在分析传统二维CAPP-NC系统工作流程的基础上,提出基于MBD的叶片CAPP-NC系统的需求,构建具有五层结构的系
飞秒激光凭借本身突破衍射极限的优势可对纳米尺寸的金属材料进行加工。为了飞秒激光能在钛膜表面进行微纳加工,了解飞秒激光与钛膜相互作用是十分必要的。双温模型(TTM)是研究飞秒激光加热金属以及能量在金属内部进行非平衡传输的理论模型,而分子动力学(MD)模拟可以从原子尺度观察飞秒激光烧蚀金属过程中的微观结构演化。本文基于双温模型采用分子动力学模拟的方法研究飞秒激光烧蚀钛膜的过程,其过程中的应力传播和钛膜
吊杯式移栽机由于具有成穴、移栽一次性完成的优点,已成为移栽作业中使用较多的移栽机械,吊杯式栽植器作为吊杯式移栽机的主要作业部件,其工作性能直接影响移栽机的成穴及膜上成穴性能、成穴阻力及栽植品质。因此深入研究吊杯式栽植器的工作特性及其与土壤之间的相互作用机理,对于吊杯式移栽机械结构及性能的优化、栽植质量的提高有着十分重要的意义。本文在课题组所设计的高速悬挂式自动移栽机的基础上,研究吊杯式栽植器在栽植
气动技术是一种以压缩空气为工作介质传递能量和信号的工程技术。气缸作为气动系统中最常见的执行机构,摩擦力会导致气缸性能严重下降,给气动系统带来安全问题。综合气缸发展,无摩擦气缸已经成为气缸研究的新方向。本课题将低摩擦气缸与气浮轴承结合,利用静压气浮原理降低摩擦力,使其能够应用于高精度的输出力响应控制场合。以静压气浮原理为基础,对气浮式无摩擦气缸展开研究,本文主要内容如下:(1)提出一种新型双作用气浮