论文部分内容阅读
利用染料敏化光电池(简称DSC,Dye-sensitized photocell)分解水制取氢气,将太阳能转化成电能和化学能,能有效地解决能源和环境污染问题,可以形成一种良性循环的能源体系,有可持续发展的前景。本文研究了可将太阳能转换成电能的染料敏化光电池的制备和优化。实验中以纳米TiO2薄膜作为DSC的光阳极,通过优化使DSC获得了较高的光电压和光电流密度,并且利用染料敏化光电池得到的电能,作为分解水电极的电能来源。本文用溶胶-凝胶法和溶胶凝胶+粉末法两种方法制备染料敏化光电池的光阳极,通过比较两种方法制备的DSC的光电性能,最终选择了溶胶凝胶+粉末法制作的DSC作为分解水的光电单元。以电镀法在FTO导电玻璃上沉积铂制得铂对电极。另外,试验了多种染料作为染料敏化光电池的敏化剂,最终选择了曙红Y作为分解水制氢的光电单元的敏化剂。本文对影响TiO2薄膜电极性能的聚乙二醇的分子量、膜厚、退火温度等因素进行了研究。结果表明,上述三个因素对TiO2薄膜的微观结构均有影响。同时不同阳离子的掺杂以及掺杂量的不同也对TiO2薄膜的光催化活性存在影响。综合了最佳的制备工艺,得到优化的太阳能电池(面积5mm×5mm)的光电压为0.628V,短路光电流密度为1.15mA/cm2,填充因子为0.425,最大功率为0.307mW/cm2,最后的光电转化效率为0.42%。利用染料敏化光电池耦合分解水电极来制取氢气,比传统的光电解池电解水制氢能耗要小得多,而且因为整个太阳能电池系统是处在空气中,也同时解决了光电解池中电解水电极腐蚀严重的问题。实验中研究了三个染料敏化光电池串联作为光电单元的工作情况,整个光电系统的开路电压为1.547V,说明利用多染料敏化光电池串联分解水制取氢气的可行性。