【摘 要】
:
近年来,预测股价对国家,社会具有深远意义而引起了研究者们广泛的关注。使用深度学习算法预测股票是该领域重要的一个分支。由于股票数据集较小,不平稳,存在不稳定性,使预测股价难度增加。并且传统的算法难以有效提取股票序列的非线性特征。随着深度学习算法的发展,循环神经网络和卷积神经网络因有较好的非线性特征提取能力而逐渐在股价预测应用中崭露头角。尽管使用传统的神经网络算法预测股价能取得一定准确度,优化算法的预
论文部分内容阅读
近年来,预测股价对国家,社会具有深远意义而引起了研究者们广泛的关注。使用深度学习算法预测股票是该领域重要的一个分支。由于股票数据集较小,不平稳,存在不稳定性,使预测股价难度增加。并且传统的算法难以有效提取股票序列的非线性特征。随着深度学习算法的发展,循环神经网络和卷积神经网络因有较好的非线性特征提取能力而逐渐在股价预测应用中崭露头角。尽管使用传统的神经网络算法预测股价能取得一定准确度,优化算法的预测股价能力仍是重要工作。为了提高算法对股价的预测能力,本文主要尝试使用新型的网络算法预测股价,针对这些算法的不足进行改进,及结合多种神经网络的优点构建更优化的混合神经网络。首先,本文改进了新型循环神经网络Dilated LSTM,构建了Block Dilated LSTM网络。由于Dilated LSTM单层的神经网络层对数据特征的泛化能力不足,本文通过使用特殊块状网络结构改进单层的神经网络层,一定程度上减缓了模型在训练过程中出现的过拟合的情况,增加了Block Dilated LSTM算法对股票数据非线性特征提取能力,提升了该算法对股价的预测能力。其次,本文改进了新型卷积神经网络Capsules中使用的动态路由算法,构建了基于Capsules网络的多分支动态路由算法。由于原Capsules网络中使用的动态路由算法,其一次性映射胶囊特征到特征向量时不能准确的反映出投票所得预测结果。本文对Capsules网络进行分组,增加耦合系数,使胶囊特征多次映射到特征向量,从而更准确客观的反映预测股价涨跌二分类的结果最后,本文结合循环神经网络GRU,对扩展卷积神经网络TCN进行了改进,构建了GRU-TCN混合网络。由于TCN网络中使用的一维卷积结构,不能有效的提取股票数据中的非线性特征。本文利用循环神经网络中的门结构对非线性特征的提取能力,使用GRU单元改进TCN网络中的普通卷积层。GRU-TCN网络更具鲁棒性,增强了对股票数据中非线性特征的提取能力,提升了对股价预测的准确度。
其他文献
图像是日常生活中的重要信息媒介,在获取、使用等过程中,不可避免受到噪声的影响,破坏图像的质量,妨碍后续的处理。图像去噪问题是典型的病态逆问题,通常是图像迭代求解算法的关键步骤,需要利用先验信息对其进行正则化约束。通常图像去噪技术利用单幅图像的各种先验特征,结合不同滤波方法完成去噪,可采用的先验信息有限,难以有效选取特征保护图像边缘细节,且需手动多次调整参数,效率较低。近年来以卷积神经网络为代表的深
随着信息科技的逐步发展,人们越来越能更加快捷方便地获取信息。但网络技术的迅猛发展与网络信息量的快速增长,却使人们逐渐迷失在大量无效信息的包围中。信息超载问题伴随着信息科技与互联网的发展逐渐被人们重视、研究,由于信息超载问题使得人们在面对海量信息时无法有效获取自己感兴趣或者对自己真正有用的信息,使得信息整体的使用效率降低。与搜索引擎依靠特定策略和算法对用户提交的关键词进行搜索不同,作为解决信息超载问
多目标优化问题在现实生活中广泛存在,这些问题具有复杂度高,不易求解等特点,传统的数学方法难以对该类问题进行很好的求解。为解决这个问题,多目标进化算法被提出来并获得了广泛应用。多目标进化算法是启发式搜索算法中的一种,在处理多目标优化问题上,该类算法表现出了良好的鲁棒性和适用性。然而,随着目标个数的增加,这些多目标优化算法的有效性将逐渐地失效。原因是当目标数大于三个时,非支配解的数量将快速的占据整个种
多目标与超多目标优化问题广泛存在于现实世界当中,处理好这些问题具有重要的现实意义。然而,这些问题具有多个需要被同时优化且可能相互间存在冲突的目标函数,导致传统的数学方法很难进行处理。进化算法是一种基于种群的启发式算法,具有较强的搜索能力,能够解决很多传统方法无法解决的优化问题,已被广泛用于求解多目标与超多目标优化问题。近年来,为处理好超多目标优化问题,学术界提出了大量超多目标优化算法(Many-o
随着我国商品经济的飞速发展,人民精神需求水平日益提高,城市商业空间愈发受到公众关注。其中,动线系统和室外公共空间不仅是设计中的主要关注点和要素,更可作为整个商业建筑的点睛之笔和亮点所在,增添城市商业中心的活力。本文以环境行为学及消费心理学作为全文的理论铺垫和基础,以空间的合理性、流畅性、趣味性和活力性的分析视角来研究现当代商业综合体动线系统及外部公共空间的设计的现状情况,并以问卷调查和实地调研的研
在金融市场,股票预测一直是投资者和学术界的热门研究话题之一。随着经济全球化和股票市场的不断成熟,发展出了多种股票投资方式。近年来机器学习在多个研究领域取得了显著的成果,其中在股票预测方向除了传统的预测方法外,研究人员提出许多新的方法,并对已有的方法不断进行改进。例如利用深度学习预测股票中使用深度卷积网络、深度Q网络以及基于LSTM(长短期记忆网络)的深度循环神经网络预测股票。还有基于SVR(支持向
强化学习是一类关键的机器学习方法,普遍应用于以目标为导向的训练环境,并基于目标在环境中自发地探索最优策略。近来已在一些领域,如游戏操控、机器人操控、车辆自动驾驶等工程应用的部分问题中,获得显著的成绩,其中包括动态规划算法,应用于已知完整的马尔可夫问题模型;蒙特卡洛算法,与时间差分算法基于无模型问题进行寻策,是本文的主要研究内容。深度学习在机器学习中作为另一大热门研究技术,使用非线性的神经网络于分析
多目标优化问题广泛存在于科学研究与实际工程应用中。由于多个优化目标之间相互冲突,单个解不可能同时使所有的目标都是最优的。因此,多目标优化问题的最优解是由多个帕累托最优解组成的集合。进化算法是一种基于种群的元启发式算法,能同时优化一组解。因此,在求解多目标优化问题时,进化算法是一种非常适合的优化算法。然而,随着多目标优化问题复杂性的变化,现有的多目标进化算法越来越难以平衡种群的收敛性与多样性。因此,
目前,物联网、边缘智能和边缘计算等技术在网络边缘上生成了大量数据,而这些日益增多的数据需要在越来越复杂的深度学习算法上进行训练,以检测、分类和预测未来事件。这个趋势在未来还会继续扩大,为了加快深度学习算法的训练速度,分布式计算正变得越来越重要。然而分布式训练在主节点与计算节点间进行着频繁的梯度交换,这使得训练承受着巨大的通信开销,并且限制了分布式深度学习的训练效率。为了降低分布式深度学习的通信开销
多任务学习作为机器学习的一个重要分支,在处理多个小样本相关联任务和挖掘相关任务之间的内在联系与共享信息等方面发挥了重大的作用。其中多任务支持向量机(Multi-task Support Vector Machine,MTSVM)是多任务学习中的一个重要的发展方向。然而现有的多任务支持向量机大多并不具备特征选择的功能,在面对高维度任务或者高噪声任务并不能达到很好的效果。此外,多任务支持向量机通常假设