【摘 要】
:
RGBT目标跟踪是指通过结合可见光(RGB)和热红外(T)视频数据进行目标跟踪的新兴热点研究课题。多年来,基于单模态的目标跟踪技术取得重要突破,但是该类算法在面对一些较为复杂的场景或者极端条件下仍旧难以发挥良好的性能,例如光照不足、恶劣天气、背景杂乱和目标遮挡等。由于热红外成像能够很好克服上述挑战因素的影响,弥补可见光成像的不足,而可见光图像可以补充热红外成像中丢失的颜色和细节信息,因此,合理利用
论文部分内容阅读
RGBT目标跟踪是指通过结合可见光(RGB)和热红外(T)视频数据进行目标跟踪的新兴热点研究课题。多年来,基于单模态的目标跟踪技术取得重要突破,但是该类算法在面对一些较为复杂的场景或者极端条件下仍旧难以发挥良好的性能,例如光照不足、恶劣天气、背景杂乱和目标遮挡等。由于热红外成像能够很好克服上述挑战因素的影响,弥补可见光成像的不足,而可见光图像可以补充热红外成像中丢失的颜色和细节信息,因此,合理利用可见光和热红外图像的互补性对于跟踪性能的提升具有重要意义。近年来,研究人员提出了基于稀疏表示、相关滤波、动态图等传统视觉模型的RGBT目标跟踪方法,但在精度和速度上要弱于基于深度学习的RGBT目标跟踪方法。因此,本文基于深度学习技术,围绕多模态特征的鲁棒学习展开研究,主要工作包含以下两个方面:第一,提出了基于深度自适应融合网络的高性能RGBT目标跟踪方法。目前,基于深度学习的RGBT目标跟踪方法中,通常仅利用某一层的模态特征进行融合,而忽略了多层次特征融合所带来的性能提升。此外,在不考虑模态可靠性的前提下,直接融合两个模态的特征,可能引入过多的噪声,不利于获得鲁棒的多模态融合特征,影响后续跟踪的性能。为解决上述问题,本工作中提出了一种基于深度自适应融合网络的高性能RGBT跟踪方法DAFNet。该方法由一个融合链构成,能够对多层特征进行融合。在此基础上,提出了一种自适应融合模块,该模块可在特征融合前充分考虑不同模态特征的可靠性,利用生成的模态权重抑制噪声和冗余信息,实现自适应模态融合。由于自适应融合网络简单有效的操作,使得DAFNet可以以近实时的速度运行。在公开数据集GTOT和RGBT234上的实验验证了DAFNet较优的跟踪精度和效率。第二,提出了基于全局上下文建模与记忆信息引导的RGBT目标跟踪方法。如何获得鲁棒的多模态融合特征一直是RGBT目标跟踪研究的重点。受自注意力机制等工作的启发,本工作提出了一种基于全局上下文信息引导的特征融合模块,该模块可挖掘模态特征内的全局上下文信息,并结合两个模态的全局上下文信息进行特征融合,实现鲁棒的多模态特征表示。此外,随着跟踪进行,通常会出现遮挡、光照变化等挑战。对于这些挑战,跟踪器漂移的可能性较大。但仅依靠当前帧的特征则难以实现更加鲁棒的特征表示。考虑到跟踪过程中会产生丰富的时序信息,本工作中提出了一种记忆信息引导网络,该网络可以较为合理地利用时序信息来对当前帧的特征进行引导,优化其特征表示,降低跟踪器发生漂移的概率,进一步提高跟踪精度。在GTOT和RGBT234数据集上的一系列实验验证了所提出方法的有效性。
其他文献
随着信息技术的发展,各领域的数据规模以惊人的速度扩张,这一方面给机器学习、数据挖掘等任务带来了更多的训练信息,另一方面增加了处理这些数据的难度。实例选择(Instance Selection,简称IS),作为一种常见的数据预处理技术,可以有效地删除一些冗余、噪声的样本,从训练集中获得一个优秀的子集,被广泛应用于机器学习、数据挖掘等任务中。因为实例选择的重要性,过去几十年里,有许多不同的实例选择算法
随着信息化和大数据时代的进一步到来,日益扩大膨胀的信息和数据已经充斥着人们生活的方方面面。为了高效和准确地获取信息,推荐系统成为了人们日常生活中不可或缺的工具。当前,大多学者对推荐系统的研究主要是针对单一领域推荐性能的提高。这种推荐系统大都存在着数据稀疏性的问题,很难精确地建模用户的兴趣。事实上,用户的信息通常是跨平台或者跨领域的,因此不同领域的信息可以相互共享和互为补充。但是针对一个特定的推荐任
随着5G网络的开始商用,人们已经开始越来越依赖网络了。网络中每天都会产生大量的数据,这些数据包括网络用户的一些个人信息,银行卡号,支付密码等等。用户与网站安全的数据交互变得尤为重要。目前,钓鱼网站因其拥有存活时间短,危害性大的特点已经成为网络安全中的一个重大威胁。网络钓鱼利用诸如电子邮件和SMS之类的社会工程技术,将网络钓鱼URL伪装成合法网站的URL来窃取用户的私人信息。因此建立一个可以快速并且
甲状腺结节是最常见的临床病变之一,可由多种病因引起,其发病率逐年升高。对其治疗的关键问题是鉴别结节的良恶性质。超声诊断是甲状腺结节诊断的一种常见方法,并在识别结节大小,定位结节部位、指导穿刺上具有一定价值。当放射医师根据甲状腺超声图像判断甲状腺为恶性时,应进一步进行细针穿刺活检或手术。但是,由于缺乏经验的放射科医生可能会导致误诊。此外,甲状腺结节自身形态复杂多样,以及超声图像本身噪声高且对比度低,
自二十一世纪以来人工智能技术的快速发展,深度学习中的神经网络算法凭借其自主学习能力在分类,检测和分割等任务上得到深入研究,目前基于深度学习的目标检测算法在行为监控、目标检测与追踪、自动驾驶等多个实际应用场景中都证明了其优秀的表现能力。随着遥感技术的进步雷达波已经成功达到毫米级别,合成孔径雷达(Synthetic Aperture Radar,SAR)作为一种应用最多、穿透力较强的雷达波,能够有效探
CDMA是现代通信系统中重要的通信技术之一,其信道可供所有用户同频、同时占用,以扩频码区分用户。但在多用户情形下存在多址干扰问题,使得用户数量的上限和CDMA系统性能受到限制。基站接收机可以使用多用户检测算法来减弱多址干扰并增加系统容量,串行干扰消除(SIC)是多用户检测算法之一,由其具有实现复杂度低和系统性能高的特点而受到广泛的关注。使用这一类的多用户检测算法,可以有效缓解CDMA所面临的多址干
脑-机接口(Brain-Computer Interface,BCI)技术通过解码大脑产生的电信号,在大脑与外部设备之间建立起一条直接的通信通路,是一种新型的人机交互模式。基于头皮脑电(Electroencephalogram,EEG)的BCI由于安全性好、操作简单的优点受到研究人员的广泛关注,但头皮EEG信号的信噪比和空间分辨率不高。独立分量分析(Independent Component An
随着深度学习技术的发展和终端设备的普及,深度学习应用被广泛运行在终端设备。深度学习应用具有强大的数据分析功能,能够处理终端设备产生的海量数据并提取有效信息,以实现终端设备的智能化。深度学习应用作为资源消耗型任务,目前主要有两种部署和执行方式:一种是基于云服务器的部署和执行,另一种是基于终端设备的部署和执行。基于云服务器的部署和执行,将终端设备产生的海量数据发送到云服务器,这将带来较高的传输时延,难
随着电子商务的不断发展,车辆路径优化问题成为物流领域的研究热点,合理的路径规划可以有效提高货物运送效率,降低运输成本。进化算法在求解该问题上可以获得较好解,因而诸多学者对此进行了深入研究。然而,现有基于进化计算的求解方法搜索解的速度较慢,并且存在随着问题规模不断扩大算法性能急速下降的情况。因此,本文针对带容量约束的车辆路径优化问题(Capacitated Vehicle Routing Probl
自然语言理解作为构建人机对话系统的核心组成部分之一,具有非常重要的科学研究价值。而意图识别则是自然语言理解系统中的一项子任务,其准确性直接影响到了自然语言理解性能,进而影响人们对人机对话系统使用的体验。随着人机对话系统的不断发展和完善,越来越多的任务型人机对话系统不断地部署到人们的现实生活中,如智能手机助手、车载语音助手以及APP中的智能客服系统等等。然而,由于人类口头语言在现实场景中的随意性和简