论文部分内容阅读
光开关和波长变换器是光通信网络中的关键器件,但是现有的光开关和波长变换器还存在“电子瓶颈”的限制,严重影响通信网络的通信容量及传输交换速率,因此,全光开关和全光波长变换技术的研究对于全光通信网络具有极其重要的意义。本文围绕全光开关和全光波长变换技术做了以下研究: 第一:设计了一种具有低开关功率的全光开关。将掺铒光纤和微结构光纤引入Sagnac环镜中,信号光在泵浦光的激励下经过掺铒光纤时被放大,环镜平衡被打破,利用交叉相位调制效应使两束反向传输的信号光产生非线性相移差,实现光开关效应。理论分析表明:信号光经过掺铒光纤后获得的增益越大、微结构光纤的非线性系数越高,开关功率越低,并且环镜中信号光的透射率随两束反向传输信号光的相移差成余弦变化,仿真得到开关功率约为26.73 mW,与理论分析一致。 第二:利用高非线性微结构光纤中的四波混频效应实现了全光波长变换。高非线性微结构光纤的非线性系数是传统光纤的几十倍,因此,在高非线性微结构光纤中四波混频效应更加强烈,在其中利用四波混频效应来实现波长变换时,波长变换的效率同样也会得到提高。研究结果表明:利用本文中的波长变换系统,对于含有10 Gbps的 NRZ或 RZ格式的光信号,经过波长变换系统,在新产生的四波混频波中成功地提取到该电信号;系统中良好的眼图形状说明这种波长变换系统的优越性能,这种波长变换方案可用在具有多波长的高速全光通信系统中,是实现高效全光波长变换的一种新的灵活的解决方案。