论文部分内容阅读
多属性(群)决策存在于生活的各个方面,它的理论和决策方法应用到建筑工程、投资决策、军事管理、生产决策、项目招标等实际问题中,利用决策者或专家给出的决策信息,对选定的方案进行排序并得到最优方案,这是多属性(群)决策的本质,但在许多实际决策中,由于客观事物发展的不确定性、决策者的知识有限性以及决策方案的局限性,导致在给出评价信息时,决策者和专家不能给出确切的数值,在一定的范围内犹豫不决,因此属性值就以犹豫模糊、区间犹豫模糊和直觉模糊等形式表示,因此模糊多属性(群)决策的研究不仅在实际问题中而且在学术领域中有着重要的意义。本文通过对犹豫模糊数、区间犹豫模糊数和直觉模糊数的决策方法进行研究,剖析这三种模糊多属性(群)决策方法的应用,提出决策思路,主要是通过灰色关联度分析法来解决模糊多属性(群)决策问题,并通过算例分析说明该方法的有效性和简洁性。(1)在犹豫模糊多属性(群)决策中,该理论目前已发展的较为成熟,考虑到决策属性间的关联性,在用交叉熵确定决策属性权重的基础上,充分考虑属性之间的相互包含的信息,因此使用灰色关联度分析法测量属性间的关联度,将最小值视为独立阀值,得到独立矩阵,通过对属性权重的调整得到最终的属性权重值并对方案进行排序。(2)根据区间犹豫模糊的运算法则和性质,定义了几何平均数模糊算子,并以该值作为风险中性决策者的扩展值,提高决策的客观性,在此基础上利用区间数的运算法则,确定最优方案,此时将灰色关联度分析法运用到区间值犹豫模糊决策中,根据欧式距离确定各个属性值的权重,最终以几何平均数为决策矩阵,结合灰色关联度分析法与区间数运算法则对决策方案进行排序。(3)在直觉模糊多属性(群)决策问题中,通过使用灰色关联分析法对直觉模糊集进行研究,在使用投影法确定权重的基础上,使用信息熵对权重进行调整,结合各个方案与最优方案的距离,使用灰色关联度分析法,选出最优的决策方案,并通过项目风险投资分析的算例将模型成功应用到了项目风险投资的多属性决策中。