设Ω是Rn(n ≥ 2)中的一个有界区域.Korn不等式是由Korn在研究线性弹力方程解的存在性时首次引入的,它指出向量场u ∈W1,p(Ω,Rn)(1
在q-级数两百多年的发展史中,Rogers-Ramanujan型恒等式始终是q-级数的重要研究课题。Rogers-Ramanujan恒等式的组合解释由Mac Mahon利用组合构造的方法给出,此类分拆定理还有著名的Euler分拆定理,Schur定理和G(?)llnitz-Gordon定理,它们相应的代数形式也被称为Rogers-Ramanujan型恒等式。1980年,Bressoud得到Roger
无穷级数一直在数学的发展中起着不可取代的作用,Banach空间中无穷级数的理论是数项级数的推广,而无条件收敛性是Banach空间中无穷级数的一类重要的收敛性质.本文从级数的无条件Cauchy性质出发,详细研究并举例说明了范数拓扑下赋范空间中级数的无条件收敛性、子列收敛性、有界乘子收敛性、重排收敛性和符号收敛性之间的关系,同时指出了上述收敛性在Banach空间中的等价性,讨论了无条件收敛级数的相关性
给定一个图G=(V(G),E(G)),如果存在一个映射c:E(G)→[k]([k]是颜色的集合),那么将这个映射c称为图(G的一个k边着色.给定两个非负整数s和t,如果图G的一个k边着色满足:对于G中的任意一条边e,颜色c(e)与e距离为1的边集中最多s条边颜色相同,并且在与e距离为2的边集中最多t条边颜色相同,那么称这个k边着色为图G的一个(s,t)-松弛强k边着色.图G的(s,t)-松弛强边着
新时代越来越注重人才的沟通合作能力以及学习能力,新课改也明确提出要在学生中倡导自主、合作、探究的学习方式,而传统的“讲授式”教学模式难以适应新时代发展的需求以及落实新课程标准的理念。三角恒等变换,作为高中数学三角函数的重点,其教学仍然以传统的“讲授式”模式为主,如何能改善三角恒等变换的教学,践行“以人为本”的教育理念,在“自主、合作、探究”教学模式下,对三角恒等变换进行教学设计研究,是本文所要研究
图的着色问题一直都是图论研究的热点问题,本文研究了图的完美着色问题.一个图的完美m着色是指将图的顶点划分成A1,A2,(43),A m这m个部分,使得对任意的i,j∈{1,...,m},Ai中的任一顶点都与Aj中的aij个顶点相邻.矩阵A=(aij)m×m称为商矩阵,或者颜色邻接矩阵,或者系数矩阵.图的完美着色在诸多领域都扮演着重要的角色,例如:运筹学,代数组合学,编码理论等等.本文主要研究了9阶
极值图论是组合数学的一个分支,它主要是研究对于给定的一类图,确定其中某些参数的极值。本文主要讨论的Turan数属于图论中的极值问题。图H的Turan数是指不包含H作为子图的n阶图的最大边数,记作ex(n,H)。Yuan和Zhang于2016年提出了关于ex(n,Fm)的猜想,其中Fm是m条路的不交并。由这个猜想出发,本文以P5∪P2l+1为研究对象,当n阶图不包含P2l+5时,分别对连通图和非连通
本论文研究二维空间中一类广义Zakharov系统(?)有限时间爆破解的爆破率下界估计.该系统描述了冷等离子体中当等离子频率与离子速度的比值趋于0时磁场的自生效应.系统(B-Z)由一个非线性Schr(?)dinger方程以及一个带二阶导数非线性项的波方程组成.相对于经典的Zakharov系统,由于磁场效应的存在,此系统包含两个由非局部效应(磁场效应)产生的额外项E2(E1(?)-(?)E2)与E1(
在变分不等式与互补问题领域,解的存在唯一性与解集的非空紧性是两个重要的研究方向.近年来,几类具有特殊结构的变分不等式与互补问题得到了大量的研究,包括张量互补问题、多项式互补问题、张量变分不等式、多项式变分不等式等.本文考察广义多项式变分不等式,它是Noor提出的广义变分不等式在所涉及的函数是多项式的情形,包含以上几类问题作为子类.本文旨在建立广义多项式变分不等式解的存在唯一性定理,并研究其解集的非
互补问题是优化领域重要的研究课题之一,广泛应用于工程、生物和经济等领域,在理论研究以及算法研究方面都有着非常大的发展.近年来,由于越来越多的实际问题包含不确定的随机参数,因而,对随机互补问题的研究是十分必要的.由于参数的不确定性,我们并不能找到一个满足所有约束条件的公共解,所以如何将随机互补问题进行确定性重构,并设计效果好的算法进行近似求解就成为重要的研究课题.随着研究的深入,人们将随机互补问题延