论文部分内容阅读
多相Fenton-like催化氧化以羟基自由基为主要活性物种,羟基自由基没有选择性,因此它被用于催化氧化降解废水时选择性较差。而分子印迹材料具有特异性的分子识别能力,可选择性地识别目标物质。因此,可将多相Fenton-like和分子印迹技术结合起来。本研究以4A分子筛为载体、亚甲基蓝(Methylene blue, MB)为模板分子进行分子印迹,印迹后掺入铁离子制备了多相Fenton-like催化剂MI-FZ (molecularly imprinted Fe-zeolite);作为参照,合成过程中不加入模板分子进行印迹所制备的催化剂记为FZ(Fe-zeolite without imprinting)。本文通过SEM、XRD、FT-IR等方法对催化剂进行表征,并对MI-FZ催化剂的吸附和催化条件进行优化。同时,以同具苯环结构的双酚A (BPA)为干扰物,研究MI-FZ的选择吸附和选择催化性。此外,对反应机理和催化剂的使用寿命进行了探究。主要实验结论如下:(1)印迹后,MI-FZ的性质发生变化。FZ表面较为光滑,主要为片状和层状结构,而MI-FZ表面较粗糙,颗粒状结构明显,且能观察到类似于孔状的结构;MI-FZ和FZ都出现了Fe2O3和Fe2Al4Si5O18的特征峰;相比于FZ, MI-FZ出现了C=O和HOH的新特征峰;MI-FZ的平均粒径和比表面积远大于FZ。(2)吸附剂投加量、MB初始浓度、pH和温度会对MI-FZ吸附MB产生影响。吸附剂投加量为0.3 g/L,亚甲基蓝初始浓度为10 mg/L,吸附温度为30℃,此时实验条件较为适宜。此外,碱性条件下吸附效果较好,这可能是因为碱性时的絮凝作用。MI-FZ对MB的吸附行为符合Langmuir模型和拟二级吸附动力学方程,且主要为化学吸附。(3)MI-FZ对目标分子MB具有选择吸附能力。FZ对MB的平衡吸附量(15.7 m∥g)约为FZ(44.4 mg/g)的3倍,而FZ对BPA的吸附量明显高于MI-FZ;混合溶液中,MI-FZ对MB的平衡吸附率为44.7%,远大于其对BPA的吸附率14.9%,而FZ对BPA的吸附率增至21%,对MB的吸附率减至28.8%。(4)催化剂投加量、过氧化氢投加量、pH和温度会对MI-FZ催化MB产生影响。催化剂投加量为0.3 g/L,初始pH为4,过氧化氢投加量为0.16mol/L,反应温度为30℃,此时实验条件较为适宜。一级反应动力学方程能更好地描述MI-FZ和FZ对MB的催化降解过程。(5) MI-FZ对MB的具有选择催化能力。FZ对MB的降解率为92.2%,远大于FZ的76.6%;对干扰物BPA,FZ的降解效率高达99.8%,远远大于MI-FZ的56.4%,表明印迹后MI-FZ对目标分子MB的催化效率增强,而对非目标物质的催化效率降低。混合溶液中,MI-FZ对MB的降解率(82.7%)远大于BPA(37.8%),而FZ对MB的降解率降至53.8%,对BPA的降解率增到73.5%,进一步证明了催化剂的选择性。(6) MI-FZ具有较好的使用寿命。在六次重复催化试验中,MI-FZ对MB的催化效率保持在87.0±5.0%。