论文部分内容阅读
机器人作为20世纪最具有代表性的高技术产品,自问世以来,倍受世界各国的关注,并广泛应用于各行各业。本文在点位控制系统理论的指导下,以实现机器人的点位作业为目的,对机器人的机械本体机构、运动学与动力学、驱动系统的设计及作业功能的实现等关键技术进行了深入地探讨,成功研制一种集移动、越障功能于一体的点位作业机器人。首先对点位机器人系统的机械本体机构进行了分析,并对机械本体结构进行了具体设计和研究,在Pro/E软件中运用三维建模技术建立了三维实体模型。对模型进行质量、间隙和干涉检测,验证总体机构设计的正确性与合理性,为点位机器人的运动学和动力学仿真提供正确的虚拟样机模型。同时,对机器人的关键承载部件进行有限元分析,包括静力学分析以及模态分析,确保结构部件满足刚度和强度要求。其次对机器人的驱动系统进行设计,为了能更好的设计机器人的驱动系统,本文根据机器人的作业要求,对机器人的运动进行轨迹规划并研究机器人点位作业功能的实现方法。利用线性段及抛物线混合的轨迹规划方法,结合机器人的实际运行特点,分析并计算机器人的运动规划参数,然后根据轨迹规划中的直线加速度特性,计算驱动电机的参数。为了保证机器人的稳定性作业,分别对机器人在实现行走及作业功能时的吸附力进行可靠性分析,建立了临界约束条件。同时为了提高机器人的控制性能,对机器人进行了运动学分析,并建立了机器人的姿态矢量与控制量之间的关系。为了实现机器人的精确点位作业,本文对点位控制系统的几种控制形式进行了分析,然后提出一种适合本作业特点并能实现其精确点位作业的控制形式-闭环控制。为了验证该系统的优越性,针对扭转谐振现象对系统的影响进行了建模和仿真分析。利用ADAMS仿真软件对点位机器人系统进行了运动学和动力学仿真,通过机构的运动来判断有限空间内的相互干涉情况;通过设置要求的运动参数,分析了点位机器人系统的动力学性能,提供了必要的动力学参数。根据对受力零部件的动力学分析结果,合理的选择了驱动电机、轴承等关键部件。