【摘 要】
:
有机太阳能电池具有制备成本低、质量轻、易于制作等优势,引起了人们的广泛关注。目前,开发优秀的活性层材料,进一步提高光电转化效率是该领域的研究焦点。吡咯并吡咯二酮(dicyanomethylidene,DPP)及其衍生物具有较宽的吸收范围、可调节的前沿轨道能级和良好的热稳定性,是一种优秀的半导体材料。本研究基于吡咯并吡咯二酮结构单元,构筑了一系列新型的有机小分子受体材料,并对其光学性质、电化学性质、
论文部分内容阅读
有机太阳能电池具有制备成本低、质量轻、易于制作等优势,引起了人们的广泛关注。目前,开发优秀的活性层材料,进一步提高光电转化效率是该领域的研究焦点。吡咯并吡咯二酮(dicyanomethylidene,DPP)及其衍生物具有较宽的吸收范围、可调节的前沿轨道能级和良好的热稳定性,是一种优秀的半导体材料。本研究基于吡咯并吡咯二酮结构单元,构筑了一系列新型的有机小分子受体材料,并对其光学性质、电化学性质、热稳定性和光伏应用进行了研究。1)基于吡咯并吡咯二酮和二茂铁的A-D-A型小分子受体材料的设计、合成及光伏应用研究。通过烷基化、溴化、Stille偶联等七步反应合成目标化合物6和9,总收率分别为2.7%和2.5%。两个目标分子具有良好的溶解性、较宽的吸收范围(450-700 nm)、合适的LUMO能级(-3.53 e V、-3.59 e V)及良好的热稳定性(Td分别为295℃、200℃),将化合物6和9为受体,以PBT7-Th为给体制备体相异质结有机太阳能电池,分别获得了0.46%和0.56%的光电转换效率。2)基于吡咯并吡咯二酮和咔唑的近红外小分子受体材料的设计、合成及光伏应用研究。通过烷基化、溴化、Suzuki偶联、Knoevenagel缩合等七步反应合成目标化合物15和16,总收率分别为4.8%和3%。目标产物均具有较低的LUMO能级(-3.82 e V、-3.85 e V)、较宽的吸收范围(500-800 nm)、较窄的带隙(1.55e V和1.45 e V)、良好的热稳定性(Td分别为324℃、221℃),将化合物15和16作为受体材料,搭配给体材料PM6制备体相异质结有机太阳能电池,分别获得了1.2%和0.83%的光电转换效率。3)吡咯并吡咯二酮分别连接丙二腈和3-二氰基亚甲基-1-茚酮的近红外小分子受体材料的设计、合成及光伏应用研究。通过烃化、溴化、Suzuki偶联、Knoevenagel缩合四步反应合成目标化合物19和20,总收率分别为2.8%和1.6%。两个目标化合物都具有较宽的薄膜吸收范围(450-1000 nm、500-1200 nm),较窄的带隙(1.55 e V、1.37 e V)、较低的LUMO能级(-3.92 e V、-3.90 e V),以化合物19和20为受体材料的体相异质结有机太阳能电池,分别获得了1%和0.29%的光电转换效率。
其他文献
巢脾(Honeycomb)是蜂巢的组成部分,是蜜蜂栖息、繁殖和酿造储存食物的场所。蜂胶在维持巢脾环境清洁和蜜蜂健康方面发挥重要作用,中蜂(Apis cerana)不生产蜂胶,其抑制微生物的繁殖,保持环境清洁,维持卵和幼虫的健康成长的机制还未见文献报道。我们推测,与意蜂巢脾(A.mellifera hongycomb,AMC)相比中蜂巢脾(A ceranae honeycomb,ACC)中的特有或含
锦纶织物在传统染色工艺中存在湿处理牢度差、染色工艺流程长、能耗大等问题;文中采用节水酸性固色剂TF-506HA对锦纶织物进行短流程染色、固色处理,探讨了固色剂用量、固色温度及固色时间对织物固色效果的影响,及节水酸性固色剂TF-506HA对不同染料的适用性,并与传统固色工艺进行对比。结果表明,节水酸性固色剂TF-506HA短流程工艺中最佳固色条件为:节水酸性固色剂TF-506HA用量6.0%,温度8
活性层是有机太阳能电池的一个重要组成部分,而活性层主要是由受体和给体混合而成。目前效率较好的搭配是宽带隙聚合物给体和窄带隙受体小分子,最高效率已经突破18%,其主要原因(a)宽带隙聚合物给体能获得较低的最高占有轨道能级(HOMO),有效地获得较高的开路电压(Voc);(b)给体和受体的吸收产生较好的互补,从而吸收更多的光子,获得高的短路电流密度(Jsc)。本文主要研究内容为基于二维氯代烷氧基苯共轭
随着环境问题日益突出,找到合适的清洁能源是首要任务,锂电池与氢能源是当今社会使用最广泛的两种清洁能源,如何提高锂电池的性能与实现高效催化制氢是当前研究的热点。本文以二维二硫化铼的大面积生长和应用为切入点,使用化学气相沉积法(CVD),利用金属薄膜的催化作用,首次在不同衬底下实现了大面积二维二硫化铼晶体的垂直生长,并将Pt/ReS2应用于电催化析氢,而且使用CVD的方法在碳纳米管表面生长二硫化铼,将
随着化石燃料的枯竭,人们对日益严重的环境问题愈加关注。在众多新型能能源存储与转化系统中,锌-空气电池(ZABs)具有能量密度高和绿色环保等优点,受到了广泛关注。其工作核心基于氧还原反应(ORR),这一反应具有动力学迟缓问题。为了提高电池的性能,需要加入催化剂来提高ORR反应速率。尽管铂基电催化剂具有出色的ORR催化活性,但由于其成本过高,而稳定性较差,极大的增加了电池的成本,阻碍了ZABs的商业化
火电机组仍然是我国的主力发电机组,其中冷端系统的运行状况对火电机组的安全经济性有着十分重要的影响,直接关系火电企业的效益。因此对火电机组冷端系统进行运行优化的研究,保证冷端系统在最优的状态下运行,对提高火电机组的经济性能及节能减排具有重要意义。以某600MW火电机组为研究对象,围绕冷端系统模型的建立和运行优化两个方面进行研究。在建模方面分别建立汽轮机微增功率模型、凝汽器变工况特性模型、循环冷却塔模
近年来,有机-无机杂化钙钛矿材料因其优异的光电性能得到了广泛的研究,由此制备的钙钛矿太阳电池的能量转换效率从2009年的3.8%提高到目前的25.5%。然而,传统的钙钛矿材料含有约35 wt%的铅,这将在未来的大规模应用中引起环境污染问题。锡基钙钛矿由于其较低的激子结合能以及较高的光吸收系数和载流子迁移率等优异的特性被视为是最有望的替代材料。此外,锡基钙钛矿还具有较窄的光学带隙(1.2-1.4 e
近年来,有机太阳电池取得了很大的进展,单节二元有机太阳电池的最高效率已经达到18%。因其具有质量轻、成本低、可溶液加工的优点,具有很好的应用前景。然而,要实现商业化应用,进一步提高电池的效率与稳定性是关键。通过合成新的给受体分子、优化器件结构以及调控活性层薄膜形貌等,都能有效提高电池性能。其中,溶剂添加剂是最常用的提高电池效率的手段,不过关于溶剂添加剂优化活性层薄膜形貌以及电池性能的内在机理,仍缺
随着全球对新能源汽车的研发和对环境保护的重视,近年来电动汽车得到前所未有的发展,而动力电池组作为纯电动汽车唯一的能源供给方,其安全性能直接影响电动汽车在使用中的安全和性能表现。当前电动汽车动力电池组主要为锂离子电池组,而锂电池性能受温度影响极大,当锂电池温度过高时,锂电池的电解液传送速度和电极的反应速率将加快,从而破坏锂电池内部正常的化学反应平衡,产生一些不利的副反应。尤其当锂电池的温度超过45℃
有机太阳电池(OSC)是一种通过有效地将光能有效转换为电能的既定方法和可选方法。基于溶液处理的有机光伏(OPV)由于许多明显的优势而在科学界引起关注,例如重量轻、转移方便、柔性穿戴、半透明、彩色模块以及可快速的卷对卷制造。迄今为止,OPV的能量转换效率(PCE)已超过18%。在二元体系中加入第三组分制备三元有机太阳电池是一种提高太阳电池光电转换效率的有效方式,但大多数三元有机太阳电池是通过简单地将