论文部分内容阅读
本文采用微波水热法制备了三种掺杂型光催化剂,分别为硫、锆单掺杂(TiO2-S、TiO2-Zr)和锆-硫共掺杂(TiO2-Zr-S)。通过正交试验和单因素实验,具体分析以下因素:掺杂比例、微波水热平行合成仪的设置参数(合成功率、合成温度、合成时间),马弗炉的(煅烧温度、煅烧时间)对三种掺杂型光催化剂活性的影响。以甲基橙溶液(10mg.mL-1)作为模拟污染物,通过改变自制紫外灯、微波(MW)、微波-紫外(MW-UV)、微波-超声-紫外(MW-UT-UV)、可见光等催化降解条件来进行光催化降解实验,探讨不同催化降解条件对三种掺杂型光催化剂的光催化活性的影响。将经过催化降解的三种催化剂洗净、烘干并反复投入甲基橙溶液的降解实验中,考察三种掺杂型催化剂的稳定性。通过X射线衍射分析(XRD)、扫描电子显微镜分析(FESEM)、X射线能谱分析(XPS)、N2吸附-脱附分析(BET)、热重示差分析(TG-DTG)、紫外-可见漫反射光谱分析(UV-Vis)、荧光光谱分析(PL和PEL)、红外光谱分析(FTIR)等现代分析测试技术,对合成的三种掺杂型TiO2光催化剂的表面形貌和内部结构进行表征分析,研究掺杂型催化剂结构及形貌的变化对光催化活性所产生的影响,所得研究结果具体如下:一、微波水热法制备TiO2-S光催化剂及其光催化活性微波水热法制备TiO2-S光催化剂的最佳条件为:微波水热平行合成仪的设置参数为:合成温度150℃、合成时间2.5h、合成功率550W,煅烧温度600℃、煅烧时间2.5 h,n(S6+):n(Ti4+)=1.0(物质的量之比)。在催化降解条件为紫外灯(自制)照射30 min时,TiO2-S光催化剂对甲基橙溶液的降解率为96.41%;而在催化降解条件为分别在MW、MW-UV和MW-UT-UV条件下反应40 min时,TiO2-S光催化剂对甲基橙溶液的降解率则分别为10.20%、98.99%和99.90%;当催化降解条件为可见光时,在可见光下反应4 h后,TiO2-S光催化剂可对甲基橙溶液近乎完全降解。XRD、FESEM分析结果显示,微波水热法制备的TiO2-S催化剂具有晶化度高、粒径大小均匀等特点,因微波水热合成法的局限性引起团簇现象;N2吸附-脱附测试分析表明TiO2-S是一种孔径大小分布均匀的介孔材料,且具有较大的表面积,有着较多的活性位点,所以TiO2-S具有较高的光催化活性;EDS、XPS测试分析表明,TiO2-S中含有Ti、O、C、S元素,S主要以+6价的硫酸盐(SO42-)的离子形态存在于TiO2,SO42-引入到TiO2晶格当中,减小了催化剂的带隙;PL和PEL测试分析表明,硫掺杂极大的抑制了TiO2-S光催化剂的光生电子与空穴的复合率,延长了光生电子-空穴对的寿命,其光催化活性得以改善。UV-Vis测表明,相比于纯TiO2,TiO2-S光催化剂会向着可见光波方向移动,发生红移,提高了可见光的利用率。S掺入使得TiO2的晶相构成改变、带隙减小、比表面积增大及光生电子与空穴的复合率降低,故而提高了TiO2催化剂的光催化活性。二、微波水热法制备TiO2-Zr光催化剂及其光催化活性微波水热法制备TiO2-Zr光催化剂的最佳条件为:微波水热平行合成仪的设置参数为:合成温度150℃、合成时间2.5 h、合成功率550 W,煅烧温度600℃及煅烧时间2.5 h,n(Zr4+):n(Ti4+)=0.04(物质的量之比)。在催化降解条件为紫外灯(自制)照射30 min时,TiO2-Zr光催化剂对甲基橙溶液的降解率为97.10%;而在催化降解条件分别为MW、MW-UV和MW-UT-UV下反应40 min时,TiO2-Zr光催化剂对甲基橙溶液的降解率则分别为10.90%、99.98%和100%;当催化降解条件为可见光时,在可见光下反应4 h后,TiO2-Zr光催化剂可对甲基橙溶液近乎完全降解。XRD、FESEM分析结果显示TiO2-Zr晶型单一,结晶度高、粒径小且分布均匀、N2吸附-脱附测试分析则表明,TiO2-Zr光催化剂的孔径小且结构规整,比表面积大、有着较多的活性位点,所以TiO2-Zr具有较高的光催化活性;XPS测试分析表明,TiO2-S中含有Ti、O、C、Zr元素,Zr主要以+4价的氧化锆(ZrO2)存在于TiO2光催化剂的表面,ZrO2会让光催化剂的带隙减小,从而提高了TiO2-Zr光催化的活性;PL和PEL测试分析表明,Zr掺杂使得TiO2-Zr光催化剂中的光生电子与空穴的重组率降低,即延长了光生电子-空穴对的寿命,使得TiO2-Zr光催化剂的活性增强。UV-Vis测试表明,TiO2-Zr和TiO2-S均会向可见光的长波方向移动(红移),前者红移现象更为明显,对可见光的利用率更高。Zr的掺入TiO2后其结晶度增加、晶相改变、比表面积增大、活性位点增加,从而使得TiO2催化剂光催化降解活性得以提高。三、微波水热法制备TiO2-Zr-S光催化剂及其光催化活性微波水热法制备TiO2-Zr-S光催化剂的最佳条件为:微波水热平行合成仪的设置参数为:合成温度150℃、合成时间2.5 h、合成功率600 W,煅烧温度600℃、煅烧时间2.5 h,[n(Zr4+):n(Ti4+)=0.04,n(S6+):n(Ti4+)=1.0](物质的量之比)。在催化降解条件为紫外灯(自制)照射30 min时,TiO2-Zr-S光催化剂对甲基橙溶液的降解率为97.82%;而在催化降解条件为分别在MW、MW-UV和MW-UT-UV条件下反应40 min时,TiO2-Zr-S光催化剂对甲基橙溶液的降解率分别为11.24%、99.98%、100%;当催化降解条件为可见光时,在可见光下反应3.5 h后,TiO2-Zr-S光催化剂可对甲基橙溶液近乎完全降解。XRD、FESEM分析结果显示,TiO2-Zr-S光催化剂的结晶度高、晶粒小且大小均匀,且因为合成方法的局限性和物理研磨不均形成团簇;N2吸附-脱附测试分析则表明,TiO2-Zr-S具有比表面积大、孔径小、孔的结构规整等优点,所以TiO2-Zr-S具有较高的光催化活性;XPS测试分析表明,TiO2-Zr-S中含有为Ti、O,C、Zr元素,Zr以+4价的氧化锆(ZrO2)存在于TiO2表面,使得光催化剂带隙减小;S主要以+6价的离子形态存在于TiO2间隙,从而减小催化剂的带隙宽度。PL和PEL测试分析表明,因S和Zr的掺杂,催化剂的光致电子与空穴的复合率降低,光生电子-空穴的寿命延长,其光催化活性得以提高。而UV-Vis测试表明,与S或Zr掺杂的TiO2相比,TiO2-Zr-S光催化剂向可见光长波方向移动的距离最多,对可见光的利用率进一步增加。Zr和S共掺TiO2,改变了TiO2的晶相组成比例、比表面积、带隙宽度及光生电子-空穴的寿命,进一步提高了TiO2催化剂光催化降解活性。本文结果表明,用微波水热法于最佳制备条件所得的三种掺杂型TiO2光催化剂(TiO2-S、TiO2-Zr、TiO2-Zr-S)均具有良好的光催化活性。三种掺杂型光催化剂在不同的催化降解条件下的反应结果表明:微波和超声对TiO2光催化剂的催化降解过程有着辅助强化作用,TiO2光催化活性得以进一步提高。微波水热法下制备的催化剂在高温高压的密闭环境下进行,没有温度梯度和剪切力的影响,反应物能够均匀受热,能溶解一些常规水热法较难溶或不溶的物质,Ti(OH)4胶体能够良好的成核,再经重结晶、分离及高温煅烧处理后即可制备晶化度高、粒径均匀的的光催化剂,催化活性良好。这为掺杂型TiO2光催化剂的制备和实际的生产应用提供了一条节能、高效和环境友好的绿色途径,并丰富了微波化学的研究内容。