结构参数大修改的重分析法及其应用

来源 :吉林大学 | 被引量 : 1次 | 上传用户:njliuyao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工程结构的设计过程通常就是一个反复修改的过程,我们通过对结构进行不断修改,重新计算其有限元问题,从而达到一个最优的设计结果。但当结构参数发生改变时,重新分析其力学特性存在一个重要问题,那就是计算大规模结构所需要的昂贵计算费用。因此在结构优化过程中,常常采用近似的方法来节省计算量。重分析方法就是一种当结构参数发生改变时不需要重新完整分析结构的快速近似方法,其计算过程一般都要利用到初始结构的力学特性。从上世纪六十年代以来,许多研究工作者对结构的模态问题,静态位移和动态响应问题等方面的重分析方法做了很多研究工作。当结构设计参数变化较小时,通过常用的一阶摄动和二阶摄动法就能得到较好的近似解。但当设计参数变化较大时,一阶摄动解和二阶摄动解会很快恶化,甚至可能变得毫无实际意义。因此,当结构参数发生大变化时,改善摄动法的计算精度是非常必要的。Kirsch首先提出了将组合近似法应用于结构静态位移问题重分析,其方法不仅提高了计算效率而且还改善了计算精度。组合近似法同样也可以被利用于结构实模态问题的重分析方法。最近,一种名叫Epsilon算法的数学方法被引入了实际工程结构的实模态问题和静态位移重分析中。即使当结构参数发生很大变化时,利用Epsilon算法加速构造出的Neumann级数的收敛性,仍然可以得到精度较高的特征值和静态位移近似解。本文第二章首先介绍了基于组合近似法的结构静态位移和实模态问题重分析法,其能适用于结构参数发生大修改的情况。然后本章提出将组合近似法扩展到复模态问题的重分析之中,利用复特征向量的前二阶摄动解构造基向量,从而得到一个缩减的(3×3)复模态问题。基于结构参数修改并未使其复模态发生根本性改变的假设,通过求解以上缩减问题,便可以得到结构修改后的近似复特征值和复特征向量。最后本章采用两个数值算例证明了提出方法的正确性和高效性。计算结果显示,即使当结构参数发生大变化时,本章提出的方法仍然是有效的。本文第三章首先介绍了另一种基于Epsilon算法的结构静态位移和实模态问题重分析方法。然后本章提出了适用于结构参数修改后动态响应重分析法的Epsilon算法。基于计算结构动态响应问题的Newmark方法,在每个时间步中利用Neumann级数展开构造向量序列,然后通过Epsilon算法加速该序列的收敛,从而可以得到该时间步中的近似位移响应值。另外本章还提出了一种针对含有时变质量,阻尼和刚度特性结构的动态响应快速算法。该方法避免了在使用Newmark法时对每个时间步中时变的等效刚度阵进行矩阵求逆,从而减少计算工作量。最后,本章通过数值算例验证了上述方法的正确性。此外,在实际工程环境中还广泛存在着结构参数具有不确定性的情况,例如测量时的不准确,制造和装配时的误差,某些组件的失效和边界条件的不确定性等等。结构参数的不确定性可能导致结构响应值发生巨大的不可预测的偏移,从而严重影响到实际操作的精度和准确性。因此,不确定性问题是现代工程结构分析中的一个重要研究课题。在过去几十年中,有很多在有限元分析中包含模型不确定性的方法(例如概率模型法,凸模型法,模糊模型法,区间分析法等)被纷纷提出,并致力于将分析结果的不确定性定量化。从上世纪六十年代以来Moore和Alefeld在区间数学方面做了很多前期工作。近来陈塑寰等人利用一阶Taylor展开和一阶摄动法,得到了计算结构特征值和静态位移上下界的区间分析方法。但上述方法仅在结构不确定参数较小的情况下适用,当参数不确定性较大或多个不确定参数共同作用时,计算结果的精度将变得很差。因此,非常有必要提出一种能够在区间参数不确定性较大时计算出更加精确的结构响应上下界的方法。本文第四章提出了一种在区间参数较大时估算结构区间特征值和静态位移的快速算法。该方法的主要思想是首先将特征值或静态位移设定为结构参数的函数,然后利用区间数学理论和二阶Taylor展开式,把多区间参数结构的有限元问题转化为多个单区间参数结构有限元问题的叠加。接着采用前两章讨论的适用于结构参数大修改的重分析方法求出每个单区间参数结构的特征值或静态位移上下界,从而便可得到多区间参数结构的区间特征值或静态位移近似解。最后通过两个工程结构算例,将本章提出方法的结果与精确解和一阶近似方法解进行了比较,从而证明了本章提出方法的实际可应用性。本文第五章采用I-DEAS Open Solution技术对上述本文提出方法进行了计算机实现,从而使它们能够解决实际工程结构问题。
其他文献
为了统一研究多项式插值问题,人们提出了理想插值的概念.多项式插值问题构成一个理想插值当且仅当其插值条件由一簇插值节点,以及每个节点上一组由有限维微分闭多项式子空间所定义的微商条件所确定.每个理想插值都可以诱导一个理想投影算子,理想投影算子是多项式空间到自身的线性幂零算子,其核恰为一理想.目前理想插值问题的理论研究主要包括两个方面的内容:一方面是探讨多元理想投影算子与多元Hermite投影算子之间的
对化学反应的控制一直是人们孜孜以求的目标。几十年来,物理学家和化学家形成了许多反应控制的理论和实验研究方向。相干控制是近些年来发展较为成熟的一种对化学反应的有效控制手段。对相干控制的深入研究不仅有助于实现人们对反应产物有效控制的理想,还有助于了解反应过程中分子体系的动力学过程,认识量子特性在分子体系中的本质和作用。本文主要根据量子体系的相干特性,分别利用纳秒和飞秒激光对几种分子和团簇的相干控制进行
冷却塔是空调系统的重要组成部分,其运行方案会对系统运行能耗造成明显影响。过去的研究缺乏不同冷却塔运行方案长周期能耗分析和考虑地铁车站空调负荷与地上建筑差异性的针对性研究。选取厦门地铁典型车站,结合现场实测数据,建立了全年逐时能耗分析模型。模型的长期预测数据与实际能耗数据的对比验证结果表明:模型预测精度满足分析要求,计算误差为5.09%。利用分析模型对3种常见冷却塔运行方案的运行能耗进行了分析,得到
本文直面长文阅读教学现状,以《"诺曼底号"遇难记》为例,针对长文教学要破解的问题提出对策,力求学生阅读能力的提升。
本论文致力于水热条件下生成的具有复杂价态的钙钛矿型锰氧化物的电学方面、磁学方面性质的研究,利用多种电学、磁学测试手段对La1-x-yCaxKyMnO3多晶样品进行了表征,并对测试结果进行了系统的理论分析。介绍了磁电子学的相关内容,对钙钛矿型锰氧化物的结构、电学和磁学性质进行了较全面的概括;在超强碱的水热体系下,成功获得不同掺杂比例的具有复杂价态的钙钛矿型锰氧化物La1-x-yCaxKyMnO3;并
长江刀鱼学名刀鲚(Coilia nasus),俗称"江刀",隶属鲱形目、鳀科、鲚属,属于江海洄游性鱼类,味道鲜美,被誉为"长江三鲜"之首。长江刀鱼肉质细嫩鲜美,富含DHA、EPA及丰富的维生素和矿物质等,具有独特的香味,是长江中下游重要的渔业资源,拥有较高的开发价值和广阔的市场前景。
期刊
目的:探讨品管圈活动对降低儿科留置针堵管风险及非计划拔管率的影响。方法:选择2020年10月1日~12月31日就诊的80例患儿作为研究对象,根据住院尾号奇偶分为对照组和观察组各40例,对照组采用常规护理模式,观察组采用品管圈活动进行护理;比较两组患儿的知识掌握程度、留置时间、留管适应度、不良反应发生情况(包括肿胀、静脉炎、非计划性拔管等)和生活质量。结果:观察组患儿知识掌握度高、留置时间、留管适应
与以往的教材相比,统编版小学语文教材的长课文数量明显增加。对小学生来说,长课文的学习难度大、耗时长。对教师来说,长课文的解读和把握挑战颇多,需要教师对教材内容做出适当取舍。在实践中,教师应落实语文核心素养,探寻有效的教学路径,紧扣单元语文要素,聚焦关键问题,化繁为简。以统编教材《"诺曼底号"遇难记》一文为例,教师可以采取以下措施实施教学:融入单元体系,落实语文要素;借力助读系统,搭建学习支架;聚焦
光与物质相互作用是当今物理学中的一个重要研究内容,利用相干光场与多能级原子作用所产生的的量子干涉效应,例如:电磁感应光透明、无反转激光、光速减慢、光信息存储、光与原子纠缠等,可以显著地改变原子介质的光学特性,产生许多有趣且有应用价值的现象,进而解决光物理和光技术中的许多问题。原子相干的实质是利用某些方法使原子不同能级间发生关联,从而在原子的多通道跃迁中发生量子干涉。这项技术对于提高介质的非线性能量
变分方法是非线性泛函分析最重要的方法之一.它的基本思想是把非线性算子方程的求解问题归结为相应的泛函临界点问题,在数学、物理、化学、生物、经济、科学工程等领域中都有重要且广泛的应用.本文我们使用变分方法研究具有重要的应用背景的几类非线性Schrodinger方程非平凡解的存在性问题.全文共五章,第一章为绪论,第二章是预备知识,后三章是本文的主要结果.第三章,我们讨论以量子力学为背景的一类非线性Sch