论文部分内容阅读
不同基体材料(如金属基、硅基)表面光反射和污染物易堆积现象会造成军事装备隐身性能差、太阳能利用率低等不利影响,这将严重制约着材料的推广应用并限制材料综合性能提升。因此,对于功能化材料的研究具有重要意义和实际应用价值。通过对基体材料表面化学和表面微观结构的合理设计与调控,能够有效抑制光反射并改善自洁性能。然而,现有功能材料却存在功能单一、机械稳定性差、产业化应用难等问题。基于此,寻求功能最优化和高可靠性减反射自清洁材料成为当前研究的热点和难点。自然界中的生物因完美平衡了自身功能特性为新结构、新材料、新方法的探索提供了创新源泉。这种仿生途径已成为解决工程化难题的有效策略,具有重要的实用价值。本文从仿生学角度出发,以荷叶为生物原型,重点研究鲜荷叶和干荷叶腹面和背面的光学性能。利用光纤光谱仪和接触角测量仪对荷叶表面反射光谱和润湿性进行测试分析,发现荷叶表面具有优异的减反射特性(λ=450-950 nm)和超疏水特性,同时荷叶腹面还具有良好的自清洁特性。利用扫描电子显微镜和超景深显微镜对荷叶表面结构特征进行表征观察,并对其表面化学成分进行测试分析。结合仿生结构特征尺寸参数,建立了三维可视化减反射结构模型,并借助FDTD光学模拟方法,揭示了荷叶表面减反射特性的作用机理。微米级乳突结构可以增加光线的传播路径长度,使光线在相邻结构间产生光的反射、折射、衍射及散射,通过光的多重作用效应,降低了光的反射;同时微结构表面的纳米结构还可以有效抑制光的菲涅尔反射,在两者共同作用下,赋予荷叶表面优异的减反射性能。受荷叶表面结构功能特性的启发,开展了减反射自清洁功能材料的仿生设计与制备。以无机二氧化硅粒子为结构材料,结合吸光材料和粘附性材料,通过调控优化材料组分的协同配比来控制材料表面微观粗糙结构和表面自由能,以合成具有最佳功能特性的无机-有机杂化材料。利用喷涂沉积工艺技术在铝合金表面成功制备出3种具有荷叶微/纳层级结构的减反射自清洁仿生复合涂层。通过不同吸光材料与仿生结构和粘附性材料的有效组合,既再现了3种涂层表面的类荷叶功能结构,又逐步提高了涂层表面减反射自清洁性能。借助上述策略,为拓展荷叶表面微/纳层级结构的应用,在纸基表面成功制备出无氟仿生多功能复合涂层。通过一系列的表征测试技术分别对4种仿生复合涂层表面结构、表面粗糙度、表面化学成分及元素分布、光学及润湿特性进行了系统研究,发现涂层表面存在微/纳层级结构和低表面自由能,并表现出优异的减反射和超疏水自清洁特性,这与荷叶表面特征结构十分相似。此外,对4种仿生复合涂层还进行了一系列性能测试试验,包括自清洁试验、液滴弹跳试验、胶带粘附试验、刀刮试验、摩擦磨损试验、冲击试验、户外光照试验等。测试结果表明,所制备的4种涂层具有良好的自清洁特性、机械稳定性、化学稳定性、耐高温性以及长期的耐候性等。这些性能为仿生功能涂层的实际推广应用提供了有利保障。基于仿生学的思想,本研究设计并制备了适用于光谱、润湿和机械稳定性的仿荷叶功能结构的复合涂层。通过调控优化微球结构、吸光材料和粘附性材料的组分协同配比,以寻求功能优化平衡为目标,实现了二元结构对减反射、润湿和耐磨损性能的集成化需求,为实用性减反射自清洁涂层材料的设计与制备提供了一定的理论依据和数据参考。