激光选区淬火对U71Mn钢轨磨损性能的影响

来源 :西南交通大学 | 被引量 : 0次 | 上传用户:janemini
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
轮轨磨损在铁路运输中一直是关键的技术问题,它与铁路运输中提高轴重及速度等一系列重大问题密切相关。激光淬火技术对提高材料表面硬度和增加耐磨性具有重要的作用,目前已运用在钢轨表面强化中。然而,淬火区表层至内部基体的力学性能分布尚不清楚,淬硬层的钢轨的耐磨损提升机理尚不明确。由于淬火斑尺寸小,无法开展宏观的拉伸测试获取基本力学性能参数,需要通过纳米压入测试技术对淬硬层材料进行压入测试,通过反演分析获取描述单调拉伸和循环变形的材料模型参数,进而建立激光选区淬火强化钢轨的三维有限元模型,分析淬火斑对U71Mn钢轨磨损性能的影响。研究成果对提高钢轨服役寿命和降低铁路运营成本具有重要指导意义。本文的主要工作总结如下:1)对激光选区淬火U71Mn钢轨母材和淬火斑材料分别进行了金相组织分析,获取了激光选区淬火对材料微结构的影响,通过母材和淬火斑材料的单轴拉伸试验,获取了材料的基本力学性质,通过母材和淬火斑的纳米压痕试验,获取淬火前后弹性模量和硬度的差异。2)对纳米压痕获取的载荷-位移曲线进行反演分析,确定了淬火斑材料基于幂强化本构模型的材料参数,在此基础上进一步确定了淬火斑材料的Chaboche模型参数。3)基于ABAQUS/Python二次开发,建立了激光选区淬火钢轨有限元模型,通过用户自定义子程序进行法向和切向载荷施加,分析了钢轨母材和淬火斑在循环载荷下的接触应力、等效应力和等效塑性应变的差异。4)基于周期性磨损单元理论分别计算了淬火斑和母材的磨损率。结果发现,激光淬火可延缓塑性应变的累积,使钢轨表面在高接触应力情况下的磨损性能得到显著提高;钢轨母材表面的磨损形式主要为塑性流变和接触疲劳剥落,淬火斑表面磨损形式则转变为轻微的疲劳剥落。
其他文献
随着机器学习和计算机技术的发展,目标检测和识别技术已开始应用于输电线路视觉巡检系统。如今,深度学习已成为目标检测和识别的主流,然而无人机摄取的绝缘子爆片图像不仅区
出壳初期,是鸡存活的关键时期,因为此时雏鸡免疫系统和消化系统等尚未发育成熟,而且体内母源抗体有限。如何提高出壳初期机体尤其是肠道的免疫功能,以抵抗外界病原体的入侵尤为重要。研究表明,胚蛋给养是一种能够在孵化期根据胚胎发育的需要提供额外营养物质来调节雏鸡早期生长发育和免疫功能的有效可行方法。黄芪多糖(Astraglus polysaccharide,APS)作为免疫增强剂,具有显著增强机体免疫力、抗
胶体微球在新型复合材料、高效催化、药物载体、光电器件、能源材料等领域具有重要的应用。本课题组在前期基于有机-无机之间的静电、酸碱等非共价键相互作用机制构筑了一系
会议
随着现代社会的持续推进与发展,我国新型智库建设作为国家近几年发展的主要战略目标,综合档案馆开始积极打造成为具备智库功能的机构。笔者结合档案学界的相关理论及专业分工
监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。在监控系统获取监控视频的过程中,复杂多变的环境因素会对视频的采集造成—定的影响。其中,视频抖动便是其中一种不利的影响。对于抖动视频目标识别与追踪,由于检测目标在视频中的每一帧的位置都会发生较大的变动,传统的目标检测方法对抖动视频中目标的提取效果不明显,于是本文提出了将深度学习卷积神经网络模型(Fast
托卡马克装置通过产生磁场控制等离子体,从而实现可控核聚变反应的发生。等离子体含有多种高能粒子,例如:中子、氢离子及其同位素、氦离子等。托卡马克装置第一壁材料必须承受高能中子辐照、热负荷、电离辐射以及等离子体与之发生的相互作用,在第一壁材料内可能产生空穴、填隙、替代等点缺陷。目前,第一壁材料主要选用高原子序数(Z)金属元素:钼和钨。面向等离子体壁处理技术是提高高温等离子体性能的关键环节,该技术可以抑
核电主管道是核岛一回路向蒸汽发生器输出堆芯热能的“主动脉”,具备耐高压、耐高温、防辐射、抗腐蚀、长寿命等特点。现有的核电主管道弯制方式主要是冷弯和热弯,温弯工艺相对于冷弯变形具有抗力小、塑性好和回弹易控制等优势,相对于热弯则不会产生晶粒异常长大等问题。因此,研究主管道温弯过程的组织演变规律和损伤规律,对主管道弯制工艺参数的制定具有指导意义。本文研究内容主要包括以下几个方面:首先,对锻制主管道材料(
为了更好地贯彻执行小学“体育与健康”课程的培养目标,教科书中规定把学生团结合作精神作为很重要的培养目标,那在现实教学中状况如何呢?为此,本文针对性地进行了调查研究与
医药作为与人类生命健康息息相关的特殊物品,与之相关的各种法律制度和管理制度日趋健全和完善,具体体现在医药的发明专利的保护制度和国家行政机关对医药领域的物品上市销售
随着我国高速铁路的飞速发展,高速铁路系统的运行安全和行车品质越来越受到人们的重视。由于制动力超过轮轨间的最大粘着力高速列车紧急制动时轮轨将会产生相对滑动,轮轨之间的相对滑动摩擦诱发剧烈温升。温升不仅使车轮和钢轨表层产生不可忽视的热应力,同时还使轮轨材料的力学性能产生劣化,进而影响机械应力,热应力和机械应力耦合作用形成轮轨局部接触区的热损伤,严重时会威胁到高速列车的运行安全和行车品质。为研究高速铁路