【摘 要】
:
聚丙烯(polypropylene,PP)作为三大塑料之一,它的微孔发泡材料与普通聚丙烯材料相比,具有轻质、兼具刚性和韧性、耐高温等独特优点,被广泛的应用于各个方面。但是,普通PP微孔发泡材料往往泡孔较大,且存在发泡工艺复杂、设备昂贵等缺点。因此,本文采用碳酸氢钠(NaHCO3)作为发泡剂,利用反溶剂重结晶法减小其尺寸,以提高发泡效率并降低PP泡孔的尺寸。同时为了提升PP的阻燃性能,选用哌嗪改性聚
论文部分内容阅读
聚丙烯(polypropylene,PP)作为三大塑料之一,它的微孔发泡材料与普通聚丙烯材料相比,具有轻质、兼具刚性和韧性、耐高温等独特优点,被广泛的应用于各个方面。但是,普通PP微孔发泡材料往往泡孔较大,且存在发泡工艺复杂、设备昂贵等缺点。因此,本文采用碳酸氢钠(NaHCO3)作为发泡剂,利用反溶剂重结晶法减小其尺寸,以提高发泡效率并降低PP泡孔的尺寸。同时为了提升PP的阻燃性能,选用哌嗪改性聚磷酸铵(PA-APP)作为阻燃剂,通过工艺简单、成本低的方法制备出阻燃PP微孔发泡材料,研究PA-APP对PP微孔发泡材料的阻燃性能的影响。主要研究结果如下:(1)基于反溶剂重结晶法制备小粒径NaHCO3微粒。以无水乙醇反溶剂,将NaHCO3水溶液经过重新结晶,得到的NaHCO3粒子尺寸明显减小。研究发现:当NaHCO3溶液中NaHCO3的质量分数为10 wt.%,主溶剂与反溶剂质量之比为1:15、搅拌速度为1500 r/min、反应温度为-10℃、加料速度为1 m L/min、表面活性剂十二烷基硫酸钠(SDS)加入量为NaHCO3质量的12.5%、入料口口径为1.5 mm时,得到的NaHCO3粒子尺寸最小,达到383 nm。(2)减小NaHCO3的粒径导致其分解温度降低,从而与PP的加工温度不匹配。因此,采用硬脂酸对NaHCO3进行热改性,发现NaHCO3与硬脂酸质量比为1:0.2时,可以将其分解温度从未改性的99.5℃提高到了160℃。随后,将改性NaHCO3用于发泡PP,结果表明发泡PP中的泡孔尺寸大约在500 nm左右,且改性NaHCO3的添加量为6 wt.%时,获得的发泡PP性能最好,弯曲强度提高了38.7%,冲击强度高了31.3%。但是,发泡PP样品的燃烧试验表明,发泡PP的极限氧指数(LOI)和UL94测试和纯PP相比并无明显变化,说明其阻燃性能较差。(3)通过引入阻燃剂PA-APP,制备阻燃改性的PP/PA-APP复合材料。与纯PP相比,添加15 wt.%PA-APP时,PP/PA-APP的LOI从纯PP的20.9%提升至29%,达到难燃级别,且样品的UL94测试可以达到V-1级别。继续提升PA-APP的添加量至20 wt.%时,样品的UL94测试可以达到最高的V-0级别;且与与纯PP相比,此时样品的单位面积热释放峰值(PHRR)下降了69%,单位面积热释放总量(THR)下降了59%,CO2的生成量下降了65%,点着时间从15 s延迟至35 s。这表明引入PA-APP可以有效提升PP复合材料的阻燃性能。
其他文献
结核病是由结核分枝杆菌感染导致的一种古老的传染性疾病。结核病传播是全球性的公共卫生问题,中国是30个结核病高负担国家之一,而云南省位于我国西南地区,经济相对落后,医疗资源分布不均衡,属于结核病的高发省份。因此,对云南省结核患者,特别是耐药结核患者,进行早期诊断尤为必要,为后续的治疗提供用药依据、赢得治疗时间。目前临床上用于诊断结核病的技术是分别基于表型和基因型的检测方法,主要包括涂片显微镜检测、罗
抗生素的大量生产和使用对环境造成了严重的危害,已经威胁到了人类的健康。因此,开发高性能吸附剂从废水中去除抗生素污染物至关重要。本文首先通过金属掺杂策略将Fe离子掺入ZIF-8中,得到Fe掺杂的ZIF-8(Fe-ZIF-8)。为评估Fe-ZIF-8对废水中抗生素污染物去除的可行性,本文系统地研究了Fe-ZIF-8对环丙沙星(CIP)的吸附性能,发现与原始ZIF-8相比,Fe-ZIF-8对CIP的吸附
钢渣是炼钢过程中排放的炉渣,具有活性低、游离碱土金属氧化物(CaO、MgO)含量高等特性,作为胶凝材料掺合料其利用率低,并且会造成体积安定性差等问题,难以在普通硅酸盐水泥、混凝土行业得到大规模利用。作为钢铁材料主要生产国,我国钢渣年排放量近1.5亿吨,而其利用率仅约为30%,大部分的钢渣仍以堆存或填埋处理,占用大量的耕地资源,造成严重环境污染,同时也是一种巨大的资源浪费。如何高效利用钢渣,克服游离
相比油料粮食作物、废弃油脂等第一、第二代生物柴油原料,广受关注的第三代生物质能源原料——微藻,具有生长周期短、油脂含量高、光合效率高、土地需求低等优点,并在能源转换和温室气体减排方面有着巨大的经济和环境效益。但是,微藻生物能源的工业化应用和市场发展仍受生产成本及对淡水资源需求等因素限制。针对该问题,使用废水作为廉价替代培养基培养微藻,减少淡水资源和营养物质投入,同时实现废水的三级处理是近年来研究的
强关联锰氧化物Re1-xAexMnO3(Re为三价Pr3+、La3+等离子,Ae为二价Sr2+、Ba2+、Pb2+等离子)是一类钙钛矿结构的锰氧化物。由于该体系材料具有优异的电磁学性能,如超巨磁阻效应(Colossal Magnetoresistance,CMR),国内外科学工作者对Re1-xAexMnO3材料开展了广泛的研究。近年来,该体系的研究重心转移到器件的实际应用,如自旋电子设备、磁传感器
天然来源的多糖因具有生物相容性、结构易修饰性、低毒性、生物可降解性和双重调解性而受到广泛关注。玛咖(Lepidium meyenii.Walp,西班牙名:maca)原产地是秘鲁,后引入国内并在云南大量种植,是云南省药食两用的天然药材,玛咖多糖(Maca Polysaccharide)是其主要成分之一,目前的研究主要是对丽江玛咖的提取方法、多糖组成及体外生理活性进行研究,缺乏玛咖多糖具体的结构和体内
2020年新型冠状病毒在全球蔓延严重危害人类和动物的生命健康,近年来新发再发病毒性传染病越来越多,需要研究解决和疫病防控密切关注。病毒在自然界中长期存在于天然宿主,但从天然宿主中溢出到新的动物群体中就有可能引发疾病。一方面是新的动物群体缺乏对病毒的免疫,另一方面是病毒跨物种传播造成病毒基因突变和基因重组,致病性病毒是在原有病毒的基础上进化而来。家养动物和野生动物接触或者它们的生活区域产生交集就给病
葡萄糖和木糖是木质纤维素生物质经酸水解得到的重要单糖,是基础的有机化工原料,开发新技术以促进生物质糖转化利用对于解决能源危机具有重要意义。乙酰丙酸酯和γ-戊内酯是重要的生物质基能源化学品,具有优良的反应特性和广泛的应用价值。生物质糖可直接转化合成乙酰丙酸酯和γ-戊内酯,低成本、多功能催化体系的开发是有效实现上述转化的关键。本论文针对生物质糖一锅转化合成乙酰丙酸酯和γ-戊内酯展开系列研究,开发了利用