Banach空间中分数阶发展系统的能控性与优化控制问题

来源 :扬州大学 | 被引量 : 0次 | 上传用户:A491858248
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,分数阶微分方程已被广泛应用于工程、物理、金融等诸多学科中.Banach空间中的算子半群理论及预解理论是处理无穷维空间中分数阶微分方程的重要工具.能控性和优化控制的概念在控制理论方面起着重要的作用.因此在一定条件下利用半群及预解理论研究分数阶微分系统的能控性和优化控制问题具有重要的理论和现实意义.本文主要研究了 Banach空间中分数阶线性及非线性微分系统能控的充要条件,分数阶微分系统控制下的拉格朗日优化控制以及时间优化控制的存在性.全文的具体安排如下:第一章我们介绍本文的研究背景、国内外研究现状以及本文所做的主要工作.第二章我们介绍本文的预备知识,包括分数阶积分和分数阶导数的定义和相关性质,半群、C-半群及预解的定义、生成定理及相关性质,集值映射的定义和相关性质.第三章研究了如下分数阶线性微分系统的能控性:其中0<α≤ 1,A生成指数有界的C-半群{S(t)}t≥0,x(t)∈X,u ∈Lp(J,Y))(p>1/α),X,Y为Banach空间.我们利用Laplace变换结合概率密度函数以及C-半群的定义及性质给出了分数阶线性微分系统适度解的定义,进一步地给出了线性系统能控的定义.在此基础上,一方面,我们首先在自反Banach空间X,Y中研究了算子形式下的系统精确能控以及精确零能控的充要条件.进一步我们去掉了空间X的自反性条件,采用不同的证明方法,得到了完全相同的算子形式下的精确能控以及精确零能控的充要条件.其次我们在X,Y为Hilbert空间且p = 2这一条件下讨论了预解形式下的线性系统精确能控以及精确零能控的充要条件.另一方面,我们首先证明了算子形式下的线性系统逼近能控以及逼近零能控的充要条件,其次我们假设X,X*严格凸,利用对偶映像在自反Banach空间X以及Hilbert空间Y中给出了预解形式下的系统逼近能控及逼近零能控的充要条件.最后,我们在相应的线性系统逼近能控的条件下分别讨论了非自治分数阶微分系统的逼近能控性以及C为正则算子这一情形下半线性分数阶微分系统的逼近能控性.本章的结果改进和推广了整数阶线性系统以及分数阶线性系统中A生成强连续半群的情形下的相关结论.第四章研究了如下带有非局部条件的分数阶微分系统的逼近能控性:其中1<q<2,A生成X上的预解族{Sq(t)}t≥0,x(·)∈ X,u(·)∈ L2(J,U),X,U为 Hilbert空间.我们利用卷积工具结合预解及由预解生成的相关的算子给出了系统适度解的定义.在此基础上,我们首先利用预解的紧性和一致算子拓扑连续性假设条件证明了由预解生成的相关的算子也满足紧性和一致算子拓扑连续性.其次我们利用相应的线性调控问题得到了控制函数的表达式.再次我们去掉了非线性函数f的Lipschitz连续性条件,充分利用预解及相关的算子的性质结合Schauder不动点定理给出了分数阶半线性系统适度解的存在性.此外,我们采用了逼近技巧,减弱了对非局部项g的紧性要求.最后,在相应的线性系统逼近能控的条件下,我们证明了上述半线性控制系统的逼近能控性,本章的结果改进和推广了该领域的一些相关结果.第五章研究了如下拉格朗日优化控制问题(P):这里成本函数J(x,u)= ∫0b L(t,x(t),u(t))dt.(x,u)满足如下混合分数阶半线性松弛系统其中0<α<1,A生成X上的预解族{S1-α(t)}t≥0,x(·)∈ X,u(·)∈Lp(J,Y),X为Banach空间,Y为自反Banach空间,U:J→2Y{(?)}是可容许的控制函数的集合,f:J × X → X.我们利用Laplace变换结合预解的定义给出了松弛系统适度解的定义.在此基础上,我们一方面假设非线性函数满足局部Lipschitz条件,进而利用推广的Banach压缩原理得到了系统适度解的存在性和唯一性.进一步构造极小化序列结合Gronwall不等式得到了拉格朗日优化可行解的存在性.另一方面,我们在预解满足紧性及一致算子拓扑连续性的条件下,结合Schauder不动点定理给出了系统适度解的存在性.进一步地,通过构造两次极小化序列的方法同样得到了拉格朗日优化可行解的存在性.这一结果表明解的唯一性不是拉格朗日优化可行解存在的充分条件.本章的结果改进和推广了该领域的相关结论.第六章研究了如下时间优化控制问题(Q):这里集合AdWT以及U0分别代表满足一定条件的可行解的集合以及控制函数的集合.可行解(y,u)满足如下带有Riemann-Liouville导数的分数阶微分系统其中0<γ<1,y(t)∈ X,u(t)∈Y,X是Banach空间,Y是自反Banach空间.生成X上的C0半群{T(t)}t≥0,Uad是可容许控制集.我们利用Laplace变换结合概率密度函数以及半群的定义在空间C1-γ([0,d],X)中给出了带有Ricmann-Liouville导数的系统适度解的定义,在此基础上,首先我们利用半群的紧性条件得到了由半群生成的相关算子Sγ(t)(t>0)的紧性、一致算子拓扑连续性以及类半群性质.其次我们利用这些性质结合Schauder不动点定理给出了系统适度解的存在性.再次我们通过构造两次时间极小化序列的方法得到了时间优化可行解的存在性,其中非线性函数不再满足Lipschitz连续性条件.此外,本章中我们充分利用紧方法,去掉了状态空间的自反性假设.最后我们给出一个例子来阐述本章的主要结论.本章的结果改进和推广了该领域的相关结论.
其他文献
图案是记载和传承苗族传统文化的重要载体之一,而刺绣是图案表现的一个重要手段,苗族服装当中尤以施洞地区刺绣图案极为精美,以变形夸张为特点。本文通过对施洞苗族服装传统
在当前国家大力倡导培养应用型人才的背景下,模块化教学应运而生,它区别于传统的以知识体系为依托,采用以专业核心能力为模块教学目标的教学模式。本文主要阐述了模块化教学
STEAM教育理念最早起源于美国,美国政府是为了加强K12关于科学、技术、工程、艺术以及数学的教育,而提出了STEAM教育。STEAM教育不仅提倡学习这五门学科知识,更提倡综合运用
<正> 60年代中期应用麻疹疫苗以来,麻疹发病率明显下降。60年代初期出生者,未接种疫苗,70年代末出现成人麻疹.本文介绍291例成人麻疹连续病例的前赡性研究。291例临床诊断为
空间错配是城市发展到一定阶段后必然出现的问题。随着中国城市化进程不断加快,农民工集聚、职住分离、房地产市场歧视等城市空间问题愈发凸显,空间错配理论为政府应对这些问
20世纪70年代末以来,大多数西方国家先后掀起了声势浩大的行政改革运动并取得了瞩目的成就,其改革的动因涉及到内部因素和外部因素。其中,内部因素包括政府规模的过度扩张、
<正> 什么是线?科学的解释是,线作为面与面的交界或物象边缘的绘画线条,是空间存在的一种形式;线作为物象特征的连续过程,又是点的运动在时间中留下的轨迹。空间和时间为线的
模糊修辞是利用语言的模糊性来提高表达效果的一种艺术。模糊修辞研究的对象是交际过程中的模糊言语问题。模糊修辞有丰富的构成手段 ,模糊修辞利用这些手段在言语交际中发挥
目的比较农村地区血液透析及腹膜透析患者的生活质量及费用,为农村肾脏病患者更好的选择血液净化模式以及卫生行政部门单病种付费提供依据。方法选取2014年8~11月在玉田县医院