论文部分内容阅读
近年来塔式起重机(以下简称塔机)安装拆卸过程是事故多发环节,尽快研究一种塔机安装拆卸过程的安全监控系统势在必行。本文首次提出了利用机器视觉进行塔机安装拆卸过程安全监控的技术方案,该技术方案的特点是:摄像头安装在顶升套架上,计算机完成对特定特征(包括图像特征和操作指令特征)的自动识别,根据塔机安全操作规程设计特定特征的出现顺序,当人为错误出现导致特定特征出现顺序错误时报警或切断不安全方向的电源,保证安装拆卸过程严格按设定的安全操作规程进行,从而提高安装拆卸过程的安全性。本文设计了图像预处理中特定环境下幂次随时间的变化曲线,该基于幂次的图像预处理能提高位图法对光照的适应性,提高识别结果稳定性、实现自动调整幂次的目的。作为监控技术方案中的关键技术,设计了一种基于位图模型进行特征识别的算法。该算法主要采用灰度图像的第6、7、8位的位图像,构造背景图像,通过前景图像与背景图像的差值及数学形态学处理分割特征目标。该算法没有过多的复杂数学运算,处理图像和识别目标速度快,可以减少对前端设备数据处理能力的要求。以塔机标准节连接螺栓和顶升横梁、销轴为研究对象,利用MATLAB,分析了实际中不同光照及不同天气状态下的特征目标-螺栓的位置,并分析了不同光照条件下的销轴的图像,证明了运用位图可以有效的消除光照以及标准节的斑驳阴影。在位图法识别出特征目标的基础上,本文提出螺栓位置归一化值的时间曲线,该曲线的振荡幅值保持在10%以内,验证了算法和幂次变化曲线的正确性,该算法可以满足工程实际中定性判断的精度要求。该位图法的提出,提高了复杂背景下识别目标特征的速度,缩短了整体监控的时间,且分析出的目标位置基本准确,给监测仪的实时性监控提供了必要条件,提高塔机安装的安全性。