【摘 要】
:
深度学习是当前计算机科学的热门研究方向之一,在各种交叉学科领域中有许多重要运用和研究成果。当前,深度学习已经在图像识别及处理方面已经有了接近甚至某些时候超过人脑的学习能力。无论是日常生活中的手机人脸识别、汽车自动驾驶,还是非日常的极小尺度(如细胞图像切割)到极大尺度(卫星遥感)等,深度学习都能够在这些领域中大有作为。深度学习在图像处理方面十分强力,不仅适用于处理真实图像,使还适用于对任何以图像形式
论文部分内容阅读
深度学习是当前计算机科学的热门研究方向之一,在各种交叉学科领域中有许多重要运用和研究成果。当前,深度学习已经在图像识别及处理方面已经有了接近甚至某些时候超过人脑的学习能力。无论是日常生活中的手机人脸识别、汽车自动驾驶,还是非日常的极小尺度(如细胞图像切割)到极大尺度(卫星遥感)等,深度学习都能够在这些领域中大有作为。深度学习在图像处理方面十分强力,不仅适用于处理真实图像,使还适用于对任何以图像形式存在的数据进行分析。这也促进了许多在传统工科领域中与深度学习的结合性研究方向的出现,比如本文所关注的微结构设计领域。微结构设计是材料设计领域和力学领域中的一重要研究方向。由于微结构单胞的机核构型可以使用图像表示,因此将深度学习与微结构设计相结合成为了设计人员重点关注的研究方向之一。然而,该方向的研究仍处于初级阶段,相关成果较少,并未形成系统性研究。卷积神经网络和生成对抗网络是两种深度学习在图像处理方面的重要成果,分别对应图像分类(预测)及图像生成这两类问题。本文针对微结构力学性能预测,以及微结构生成设计这两方面上研究了上述两类神经网络的适用性,并考察了多种网络设计的改变对神经网络预测及生成性能的影响,为深度学习在微结构创新设计中的进一步研究和运用打下基础。
其他文献
现如今物联网正在快速发展,无线数据流量的需求随之迅猛增长,多种无线信号,如WiFi、蓝牙、毫米波等充斥在人们的工作和生活空间。无线信号除了可以进行通信外,还可以被用来实现感知覆盖范围内目标信息状态,如位置、速度、手势、步态、生命体征等。目标的不同状态对无线信号的反射、折射、散射等现象会产生不同的影响,无线感知技术通过揭示和分析目标对周围无线信号的影响模式,实现不同的感知任务。凭借其不需携带任何设备
深度神经网络在图像分类、识别等领域取得重大进展。但深度模型的“端到端”决策逻辑和工作机制,使其成为“黑盒”模型,不被人类用户理解。人们开始研究可解释性技术,期望以可理解的方式解释这些模型,因此对深度神经网络的工作原理进行准确地解释是很重要的。然而,一个被操纵的解释可能会削弱人类用户对解释的信任,进而误导人类用户不相信一个可靠的网络。因此,设计有效的攻击方法来模拟现实世界中各种可能的威胁,对于评估现
Web2.0技术的进步使得在线知识社区成为用户之间生产和分享知识的大规模协作平台。而随着人工智能(Artificial Intelligence,AI)技术的不断发展,在线知识社区正逐渐由人人协作转变为人与机器人协作进行知识生产。然而,虽然当前社区中的机器人已经成为的重要协作主体之一,但对于人机协作的内在影响机制的研究仍缺少足够的重视,此外,当前关于人机协作的研究缺少对应的理论框架作为指导,并且缺
随着科学技术的进步以及生活质量的提升,人们渴望更加方便、快速、有趣地进行人机交互,手部姿态估计和形状估计有望实现无接触的人机交互。随着人工智能的发展和5G技术的商用,利用深度学习估计手部姿态和形状成为可能,大量研究者尝试利用深度图像和彩色图像估计手部姿态与形状,并取得了令人欣喜的成绩。但当前的手部姿态及形状估计方法仍有提升空间,十分有必要对此展开研究。本文的研究工作如下:(1)深度图像自带深度信息
近年来,随着科学技术的迅速发展,人们的生活水平有了很大的提高,但随之也带来了许多环境污染问题。环境中的各种有毒有害气体正在威胁着人们的健康,因此开发一种选择性好、灵敏度高、工作温度低的传感器变得尤为重要。其中尖晶石型(AB2O4)和钙钛矿型(ABO3)两种金属氧化物由于独特的结构成为了当下的研究热点。本文主要包含了NiFe2O4和LaFeO3两种双金属氧化物的制备及其气敏性研究。主要研究内容如下:
语音质量评估技术是语音处理领域重要研究内容之一,它在移动通信、互联网、消费电子、数字娱乐、公共安全等领域具有广泛应用。主观语音质量评估方法通常需要较多的人力与物力资源,且耗时较多,因此客观语音质量评估方法越来越受到人们的青睐。有参考语音的客观质量评估方法需要纯净的原始语音,这在实际中有时难以获得。于是无参考语音的客观质量评估方法逐渐得到重视,特别是近年来基于深度学习的无参考语音质量评估研究已取得重
光纤声传感器以其体积小、抗电磁干扰、频率响应范围宽、适应恶劣环境等特点,在很多领域发挥着重要作用。膜片式非本征Fabry-Perot干涉(EFPI)声传感器以高灵敏度和探针型传感器结构而引起了广泛的研究兴趣。基于正交点(Quadrature point,即Q点)的强度检测方法是EFPI声传感器应用最为广泛的解调技术之一,但强度解调检测方式具有有限的检测动态范围,当检测强声信号时会发生信号失真。此外
基于我国IPO核准制制度背景,本文检验IPO对企业商业信用供给的影响。结果发现:第一,相比IPO前,企业IPO后商业信用供给显著增加;第二,作用机制检验发现,缓解融资约束、增强从供应商处获取商业信用的能力是IPO促进企业商业信用供给增加的两个路径;第三,异质性检验发现,IPO对企业商业信用供给的促进作用主要发生在非国有企业、规模较小的企业及产品市场竞争激烈的行业;第四,进一步检验发现,IPO前商业
显著性检测也被称为显著目标检测,其目的是通过智能计算和理解,将图片或视频中人眼感兴趣的部分分割出来并标记为高亮。由于本任务的结果在一定程度上模拟了人类的注意力机制,可以作为先验信息在许多其他的计算机视觉任务中应用,因而本任务受到了越来越多学者的关注。近年来,得益于深度学习技术的应用,显著性检测任务得到了快速发展。以RGB图像输入的全监督显著性检测任务为基础方向,在各种不同数据场景下的显著性检测细化
一些金属离子(例如铁离子等)对人体健康具有重要影响,少量摄入时对人体有益,若过量则会威胁人体健康,因此,研制简单快速的金属离子检测方式在环境监测和食品安全等领域具有重要意义。传统的金属离子检测方法如原子吸收光谱法等操作复杂,成本高昂,不利于现场实时监测。因此,便携式高灵敏度金属离子检测技术对于人体安全检测的需求至关重要。局域表面等离激元共振(Localized Surface Plasmon Re