论文部分内容阅读
钛酸锶钡(Ba1-xSrxTi O3,BST)是钛酸锶和钛酸钡的完全固溶体,属于钙钛矿结构(ABO3),具有高介电常数、低介电损耗、居里温度可调等优点,广泛应用于介质储能、动态随机存储器、微波移相器和多层陶瓷电容器等领域,具有很好的研究价值和应用前景。本论文采用草酸盐沉淀法制备了Ba0.6Sr0.4Ti O3陶瓷粉体,通过X射线衍射、扫描电子显微镜、傅里叶变换红外光谱、热重-差热分析等测试手段对陶瓷粉体的晶体结构、微观形貌进行表征,研究了草酸盐沉淀法的反应过程以及溶液p H值、煅烧温度等反应条件对粉体微观形貌的影响。选取粒径均匀、分散性良好、纯度高的Ba0.6Sr0.4Ti O3粉体作为基体材料,以Cu(NO3)2和Mg(NO3)2作为包覆材料,系统研究了化学沉淀法和室温固相法制备复合粉体工艺以及反应条件对粉体结构和形貌的影响,并分别对其表面包覆的形成机理以及影响因素进行了探讨。在此基础上,以化学沉淀法和室温固相法制备的粉体为原料制备了Ba0.6Sr0.4Ti O3@Cu O和Ba0.6Sr0.4Ti O3@Mg O复相陶瓷,研究了其烧结机理以及微观结构对介电性能的影响。最后,作为对比,研究了钛酸铜钙复合钛酸钡陶瓷的烧结工艺和介电性能。具体结论如下:(1)共沉淀法制备BST粉体形貌受溶液p H值和煅烧温度的影响较大,结果表明,控制反应溶液p H值为3.5,煅烧温度为850℃时可获得形貌较好、相纯度高的Ba0.6Sr0.4Ti O3粉体。(2)以Cu(NO3)2·3H2O和上述共沉淀法制备的Ba0.6Sr0.4Ti O3粉体为原料,采用沉淀法和室温固相法制备了不同包覆量的BST@xwt%Cu O复合陶瓷粉体。在此基础上,以BST@Cu O复合粉体为原料,在12~18M pa成型压力条件下压片,1280℃烧结2小时制备了BST@Cu O陶瓷,介电性能测试结果分析表明,由于高温下Cu2+的扩散部分进入钙钛矿结构中Ti4+的位置,引起晶格畸变,同时烧结过程中产生的液相Cu O处在晶界位置,引起界面极化致使陶瓷介电常数增大的同时介电损耗也增大。不同频率下的介电性能测试结果表明,室温下两组BST@Cu O陶瓷介电常数和介电损耗都有着很好的频率稳定性。(3)以Mg(NO3)2·6H2O和前述制备的Ba0.6Sr0.4Ti O3粉体为原料,采用沉淀法和室温固相法制备了不同包覆量的BST@xwt%Mg O复合陶瓷粉体。在12~18M pa压力范围下压片后,1280℃条件下烧结2小时制成复相陶瓷片。Mg O有细化晶粒,提高陶瓷致密度的作用。SEM分析表明,沉淀法制备的陶瓷片致密度更高,晶粒更为均匀细小。介电阻抗测试结果表明,两种制备工艺各个组分的复相陶瓷片都有着很好的频率稳定性。由于氧化镁的介电常数低于BST,大多数情况下包覆一定量的Mg O会降低陶瓷介电常数。对比沉淀法和室温固相法制备的复相陶瓷介电性能,室温固相法的复相陶瓷有着更好的频率稳定性和较高的介电常数,沉淀法的复相陶瓷则有着更低的介电损耗。(4)通过传统固相法结合两步工艺制备了(1-x)Ba Ti O3-x Ca Cu3Ti4O12(BT-CCT O,x=0.05,0.1,0.15和0.2)复相陶瓷。研究发现,单相的BT和CCTO在1200°C会发生反应形成二次相Ba4Ti12O27和Ca Ti O3,且随着CCTO含量的增加,BT-CCTO复相陶瓷表现出四方(晶粒尺寸约1μm)到长棒状(约10μm长)不均匀的晶粒生长方式,介电常数显著提升,明显偏离复相材料的对数法则,100°C附近表现出弥散特性,提升了BT陶瓷的温度稳定性。