论文部分内容阅读
超快激光诱导的二维、三维等各种纳米结构引起了人们越来越多的关注,它们在高密度光存储、LED、光子晶体等方面具有很强的应用前景。本文研究了三光束飞秒激光干涉在半导体材料上诱导二维复合微/纳米周期结构及其光学特性,主要研究结果如下:(1)建立了三光束飞秒激光干涉实验系统。保持实验系统的光路不变,仅通过改变飞秒激光的偏振组合,在ZnO、ZnSe、GaP等半导体表面实现了纳米光栅、辐射状纳米花、纳米环等多种微/纳米复合周期结构的制备。理论计算了三光束干涉的光强分布、椭偏度分布和偏振方向分布。实验和理论结果表明:二维复合微/纳米周期结构的长周期结构由激光光场强度干涉花样决定,短周期纳米结构由偏振干涉花样决定。通过改变任意两光束间的夹角,实现了不同长周期的复合周期结构的制备。引入激光偏振使得多光束干涉制备周期结构更具有多样性和灵活性,夹角的增大使得结构向更规则的微小尺寸迈进。改变偏振组合的飞秒激光多光束干涉在高密度光存储、材料改性等方面具有潜在的应用价值。(2)用800nm飞秒激光脉冲激发ZnO表面的二维复合微/纳米周期结构,发现其近带隙发光比平板表面增强6-7倍,与通过化学气相沉积方式制备的ZnO纳米棒的结果相近。在显微镜下观测到了与周期结构相对应的近带隙显微发光,如蓝光纳米点阵、纳米环、均匀的蓝色发光平板等。研究了800nm飞秒激光脉冲激发下二维复合微/纳米周期结构发光增强的机制,发现周期结构的光吸收比平板表面增强了约5倍,达到90%左右。同时,表面缺陷的产生也是促使近带隙发光增强的一个原因。本文还研究了ZnO带隙发光谱的红移、展宽与激发光波长、强度等的依赖关系。(3)研究了ZnSe晶体表面的二维复合微/纳米周期结构的发光特性与飞秒激发光的入射角、偏振方向、波长、强度的依赖关系,并与平板表面进行了对比。当800nm飞秒激光垂直照射到ZnSe晶体二维周期结构表面时,其近带隙发光比平板表面增强3-6倍,与激发光偏振方向无关。当激发光斜入射时,入射角越大,结构表面的近带隙发光增强也越大,而且激光偏振方向的影响很大。在1206nm激光脉冲的激发,ZnSe材料表面的光致发光谱中有一个近带隙发光峰和一个二次谐波峰。当1206nm激光垂直入射时,周期结构表面相对平板可实现40倍左右的带隙发光增强,但二次谐波信号强度约为平板表面的1/4-1/5。1206nm激光掠入射时,周期结构表面相对于平板表面可实现200-500倍的带隙发光增强。在667nm和520nm的飞秒激光激发下,周期结构表面发光的偏振依赖特性与800nm激发的结果类似。研究了520nm、667nm、800nm和1206nm四种波长飞秒激光脉冲激发下周期结构的带隙发光强度与入射光强度的依赖关系,发现引起ZnSe近带隙发光的电子跃迁到吸收峰对应的能带(4.7-5.0eV),而不是接近导带底的吸收带(2.7-3.1eV)。(4)本论文最后研究了四种不同环境中(空气、纯净水、真空30K、真空295K)单光束飞秒激光在GaAs表面诱导周期纳米条纹,对比了不同环境下条纹的周期和形成过程,探究了环境对飞秒激光诱导纳米条纹的影响。另外,在相同环境下,研究了不同激光脉冲能量对条纹形成过程的影响,为进一步研究单光束飞秒激光诱导短周期条纹结构的物理机制打下基础。