论文部分内容阅读
大数据背景下,高效处理海量、高维、不确定数据的迫切需要对传统的信息处理技术提出了挑战。以进化计算为代表的智能计算方法被认为是处理复杂多目标问题的有效手段,近年来已成为研究的前沿和热点关注领域。目前,多目标进化算法已在众多领域得到十分广泛的应用,并解决了许多非常有价值的实际问题,其研究成果已经渗透到多个学科。然而,在进化多目标求解的过程中,仍然需要重点关注以下两个方面:1)如何提高多目标进化算法的通用性;2)如何在多目标进化算法搜索过程中融入问题的特征,以实现问题的高效求解。有鉴于此,本论文旨在研究自适应学习机制驱动的多目标进化算法,并对其在复杂多目标优化问题的高效求解方面展开研究,主要创新性工作如下:1.多目标差分进化算法和基于规则的多目标分布估计算法对于不同类型问题的求解具有各自的优势和不足,如何有效融合各自的优势是提高算法计算效率的一种重要途经。为此,提出一种自适应协方差学习模型驱动的多目标混合差分-分布估计算法。首先,通过矩阵理论分析差分进化算子的数学特征以及对不同类型优化问题的影响。其次,利用协方差矩阵来识别种群分布的数据关联特性,以此构建特征坐标系,并利用Sigmoid函数实现差分进化算子在两个坐标系下的协同搜索。接着,在进化的后期利用规则模型和负相关选择使得算法能够尽可能地覆盖整个Pareto结构,从而提高计算效率;最后,与3个多目标差分进化算法和3个基于规则的多目标分布估计算法在两组不同类型的测试函数上进行比较。实验结果表明,提出的算法能够有效解决不同类型的多目标问题,具有更强的鲁棒性。2.针对逆学习模型在不规则Pareto前沿的多目标优化问题上遭遇计算效率低的问题,提出一种自适应逆学习模型驱动的多目标进化算法。该算法将整个进化过程划分为探索和开发两个阶段,在探索阶段利用均匀分布的参考向量来提高算法的探索能力;在开发阶段,外部精英存档中的非支配解被用来自适应地调整参考向量的分布,这有利于提高算法的勘探能力。此外,偏好交叉和逆学习模型的协同搜索进一步提高了算法的计算效率。最后,与六个基于规则的多目标进化算法在18个不规则的测试函数上进行比较。实验结果表明,真实验结果表明,提出的算法能够有效解决各种类型的不规则多目标优化问题。3.针对基于规则的学习模型和逆学习模型的进化种群在决策空间和目标空间分布的不平衡的问题,提出一种自适应双空间学习模型驱动的多目标进化算法。该算法首先引入一种基于序列化的种群初始化方法来识别距离函数的适应度特征,这有利于降低算法陷入Pareto局部最优的风险;其次,设计一种自适应机制来调节计算资源的分配,以实现两种学习模型的优势互补;接着,通过集成双空间的环境选择策略实现同时兼顾种群在不同空间分布多样性的目标;最后,与六个基于规则的多目标进化算法在22个测试函数上进行比较。数值模拟与仿真实验结果表明,提出的算法的性能明显优于其它对比算法。4.针对混沌时间序列预测和电力负荷预测中的建模问题,构建一种多目标引导的稀疏深度信念网络。在网络训练种,该模型将带有稀疏惩罚因子的单目标函数转化为包含有重构误差和稀疏程度的双目标函数,并结合多目标进化算法和CD-1方法实现参数的自动选择,避免了手动调节稀疏惩罚因子难的问题。数值实验结果表明多目标引导的深度信念网络在时间序列预测的应用中比其它常用模型具有一定的优越性。