两类界面问题的有限体积元方法

来源 :南京师范大学 | 被引量 : 0次 | 上传用户:xm121
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文致力于两类界面问题的有限体积元方法的研究,全文共分为三个部分.第一章首先我们介绍了关于界面问题的一些浸入方法,阐述了发展浸入有限体积元方法的目的。然后我们介绍了一维带界面的双相延迟方程、高阶紧有限体积元方法和Pade型紧有限体积方法。第二章第一部分讨论了带界面的泊松方程的浸入有限体积元方法。通过源项移去技巧,将带非齐次跳跃条件的界面问题转化为带齐次跳跃条件的界面问题,与跳跃条件相关的项被转移到了方程的右端。此时,在四边形网格下,其双线性基函数是通常的有限元基函数。两个数值算例验证了格式的可行性和有效性。第二部分进一步讨论了带变系数的二维椭圆界面问题的浸入有限体积元方法,其变系数在通过界面时有一个有限的跳跃。由此导致其解和通量在通过界面时也会产生一个有限的跳跃,增加了数值计算上的困难。我们仍先使用源项移去技巧,得到一个等价的带齐次跳跃条件的椭圆界面问题。由于变系数的存在,在界面附近的节点基函数是分片多项式函数,其构造需满足齐次跳跃条件。若远离界面,我们使用通常的有限元节点基函数。四边形网格对分片多项式的构造在某些情况下会产生奇异性,故我们使用了三角形网格。由此产生的线性问题简单并且容易求解。我们对此进行了在能量范数意义下的误差估计。并给出了数值实验。两个数值实验进一步验证了我们的结论:在L2范数意义下,界面附近的误差和整体误差均有O(h2)阶精度;在H1范数意义下,均有O(h)阶精度。第三章给出了一维带界面的双相延迟热传导方程的高阶紧有限体积元方法。除界点格式外所得到的系数矩阵是三对角的,具有较好的对称与对角性质,且易于求解。该高阶方法有助于对这个方程在相对疏松的网格上研究纳米级别的热传导现象,有重要的实际应用价值。我们应用离散能量方法在L2和L∞范数意义下给出误差估计,其收敛阶是O(△t2+h3.5)。数值例子验证了该方法的有效性和可行性。该高阶有限体积元方法的构造涉及到对原方程的回代。一旦我们遇到含多个变量的复杂方程时,该方法就不是很实用了。进一步我们考虑了一个四阶Pade型紧有限体积方法更简便的高阶方法,可以处理多维的界面问题。方程的解及其导数都达到了四阶精度。第四章给出了本文的主要结论和有待进一步解决的问题。
其他文献
本文主要研究的是amenable群作用动力系统的Bowen拓扑熵和大偏差公式.我们对紧致度量空间上的amenable群作用动力系统引入了 Bowen拓扑熵的定义,通过几何测度论的方法,我们建立了 amenable群作用下Bowen拓扑熵的变分原理:紧致子集上的Bowen拓扑熵等于该集合上满测度的Borel概率测度的下局部测度熵的上确界.同时我们还证明了关于局部测度熵的熵公式.利用这些结果,我们对a
纤维素和半纤维素是地球上最丰富的可再生性生物质资源,它们的降解、转化是自然界中碳素转化的主要环节,来源于嗜热菌中的生物质降解酶具有较高的热稳定性和催化效率,能够很好的满足工业化生产的需要。大肠杆菌具有繁殖迅速,培养简单,遗传背景清楚,基因克隆表达系统成熟完善等优点,是人们表达重组酶的第一选择。但是,外源蛋白在大肠杆菌中高效表达时容易形成包涵体。pHsh系统作为新型大肠杆菌表达系统,pHsh载体包含
赤拟谷盗(Tribolium castaneum)作为危害严重的世界性储粮害虫,也是重要的鞘翅目昆虫的代表,其全基因组测序的完成及RNAi的高效性使之成为一种新型模式昆虫。甲状旁腺激素受体与胰岛素类似受体是重要的膜受体,与其配体结合后,通过跨膜传递途径将信号传入胞内,然后通过第二信使在胞内传递,将信号逐级放大,产生生理、生化效应。甲状旁腺激素受体在哺乳动物中的生长发育中都具有重要的生理功能。甲状旁
本文对几类偏微分方程(PDE)约束的最优控制问题的数值方法进行了研究,主要研究最优控制问题中所涉及的偏微分方程的数值离散方法,对离散方法的精度给出了理论分析和数值实验.有效的数值方法对求出最优解是至关重要的.第一部分考虑了确定性的偏微分方程约束的最优控制问题.首先,针对椭圆界面控制问题,先优化后离散,采用了浸入有限元和变分离散相结合的离散方法.对控制、状态和伴随的误差进行了估计并且得到了最优阶的收
本文主要研究了几类拟线性椭圆型问题解的相关性质,具体包括解的存在性、非存在性以及多解性等.第一章研究拟线性椭圆型方程组正解的存在性与非存在性,其中Ω (?) RN为有界光滑区域或者Ω=RN(当上下解方法,我们得到当Ω为有界光滑区域或者Q=RN时,该问题至少存在一个正解,且当Ω=RN时,该问题不存在径向对称的有界正解.第二章研究一类含凹凸项和临界项的p-q-拉普拉斯方程组数人*>0使得当λp/(p-
本文研究抛物型方程(组)的几种性质,包括解的局部存在性和唯一性,解的整体存在性,解的有限时刻爆破,解的生存跨度以及解的有限时刻熄灭等.第一章研究具有非齐次非局部边界条件的抛物型方程组解的整体存在和有限时刻爆破性质.这里Ω是RN(N≥1)中具有光滑边界的有界区域,参数p,q,r>0. f(x,y),g(x,y)是定义在(?)Ω×Ω上的非负函数.初值函数(uo(x),v0(x))∈C2+α(Ω),其中
设(x,d)是紧致度量空间,f:X→x为连续映射,则称(X,d,f)为拓扑动力系统。动力系统主要研究连续映射的渐进性,如拓扑熵、拓扑压、混沌和Lyapunov指数等。我们知道在经典的遍历论中的拓扑熵与测度熵是用来说明系统的复杂性的,二者之间关系称为变分原理。我们把重点放在动力系统中的非紧子集的维数熵(压)并建立条件变分原理。本文主要利用动力系统中的轨道跟踪性质来研究与Birkhoff遍历定理相关的
在本文中,我们研究几类流体及流体耦合问题的有限元方法。流体及流体耦合问题在海洋学、地球物理学以及流体力学中经常遇到。例如,低速运动的气流,水流,地下水污染问题以及大气-海洋耦合问题等。当应用通常的有限元方法来数值求解这些问题,由于对流占优特性、高雷诺数问题及线性和非线性耦合条件,通常的有限元方法会使数值方法的有效性变差。本文的目的是综合运用特征方法、变分多尺度方法及稳定化有限元方法,设计有效求解此
在过去的几十年里,对于偏微分方程数值解的逼近,人们已经提出了各种各样的数值求解方法,如两网格方法,保结构数值方法等.这篇论文主要讨论了这些方法在某些偏微分方程中的应用.文章首先讨论了两网格有限体积元方法在非线性Sobolev方程中的应用,然后介绍了如何利用保结构方法,如离散变分导数方法及哈密尔顿边界值方法等构造保积分的数值方法.首先,我们针对非线性Sobolev方程提出了一类两网格有限体积元方法.
设X是一个实的无穷维的希尔伯特空间,(·,·)x是内积,||·||x恢是其上的范数.A:D(A)(?)X→X是一个无界自伴算子,它的谱集只含有离散谱σ(A)=σd(A),并且假设Φ满足:可微,并且对x∈Z,存在M>0使得|Φ’(x)y|≤ M‖y‖X,(?)y∈Z.(Φ0)意味着对任意x∈Z,都存在X中的元素▽Φ(x)使得对y∈Z都有Φ’(x)y=(▽Φ(x),y)x.我们考虑下面的算子方程:Ax