论文部分内容阅读
本文基于2004~2017年Argo网格数据集(BOA_Argo),系统分析了热带太平洋障碍层厚度的特征、演变机理及其与ENSO事件的关联。在年平均意义上,热带太平洋障碍层呈现出3条显著的从西太暖池区向东太平洋延伸的带状分布特征,分别位于以12°N、5°N、10°S为中心的纬度带上;其中西太暖池区存在着永久的、厚的障碍层(>20m),12°N和10°S纬度带上的障碍层分别以冬、夏季为主。暖池区的障碍层存在明显的年际变动,其厚度变化幅度可达15 m以上。多变量经验正交函数(MV-EOF)分解的主模态表明西太暖池区的降水与障碍层的异常场分布型态非常吻合,都呈现明显的东(正)西(负)的反相位分布型,降水的正(负)异常造成了障碍层的正(负)异常;且与ENSO事件高度相关(相关系数0.87),存在显著的2~4年的年际变化主周期信号。合成分析表明ENSO期间障碍层的变化主要局限于160°W以西的赤道太平洋,在厄尔尼诺(拉尼娜)年,异常偏厚(薄)的障碍层位于160°E以东,异常偏薄(厚)的障碍层位于160°E以西。在厄尔尼诺(ElNino)期间,由强降水、低盐水的水平输送以及下降的开尔文波导致的混合层深度(MLD)异常对赤道160°E以东异常偏厚的障碍层起主要诱导作用,该区域障碍层厚度的变化滞后Nino3.4指数1个月;而在拉尼娜(LaNina)期间,由海水辐聚、潜沉导致的等温层深度(ILD)异常是赤道160°E以西出现较厚障碍层的主要原因,该区域障碍层厚度的变化超前Nino3.4指数1个月。通过对比分析东部型厄尔尼诺(EPEN)和中部型厄尔尼诺(CPEN)期间障碍层的演变特征,发现在CPEN事件盛期,赤道太平洋异常偏厚的障碍层主要出现在日界线以西,厚度变化达到10 m以上,而在EPEN事件盛期,赤道太平洋异常偏厚的障碍层主要出现在日界线以东,厚度变化较CPEN更为显著,可达15 m以上。针对赤道太平洋障碍层的纬向迁移分析表明:对应El Nino(La Nina)年,赤道太平洋偏厚的障碍层位置显著东(西)移,并且与暖池东部边缘和海表盐度(SSS)锋的纬向迁移大致处于同一位相。在大多数情况下,较厚的障碍层局限于暖池的东部边缘内(170°W以西),位于SSS锋附近或者偏西,SSS锋附近的障碍层可能归因于水平平流、强降水以及开尔文波。值得注意的是,在2015年的9月到2016年2月期间,赤道中太平洋的SSS锋消失,对应着厚障碍层的消失,表明厚的障碍层的位置与西太暖池东部边缘内SSS锋的纬向位置密切相关,其具体机理有待进一步的数值模拟探究。对SSS锋断裂区域进行了盐度收支分析,发现该区域长时间的混合层盐度收支平衡主要是淡水通量外强迫与海洋过程自身调整的平衡。SSS锋消失的时间段,由于较强的降水使得淡水通量项较强的负贡献导致该区域盐度异常的变淡,而海洋平流对盐度变化的微弱正贡献并不足以提供该区域该时间段SSS锋生成的有利条件。并且该区域淡水通量项变化明显超前于平流输送项变化1个月,表明海洋平流是大洋对淡水通量强迫产生的被动响应。最后,从降水、海表流、风应力变化与障碍层的回归分析表明降水和风应力主要通过影响混合层深度来影响障碍层厚度,而经向流和纬向流可能通过海水的辐聚、潜沉来影响等温层深度从而影响障碍层厚度变化,厚障碍层倾向于在弱风、强降水、向西的强纬向流以及赤道两侧向赤道方向辐聚的经向流的条件下形成,对于赤道西太平洋障碍层的变化,降水可以解释其中的30%~35%,风应力的贡献可达20%左右,纬向流的作用可以解释15%~20%。