【摘 要】
:
二氧化碳排放所导致的全球变暖问题给生态环境带来了不可逆的破坏,实现“碳达峰、碳中和”目标已成为世界各国共同努力的方向。努力提升可再生能源发电占比则是持续推进碳减排,助力碳中和最终目标实现的重要手段。风电作为可再生能源发电的主要形式,也必将迎来大规模的发展。然而由于风电自身所固有的间歇性、随机性及波动性特点,其大规模并网会给电力系统带来较大的随机波动功率,对系统频率带来不利影响。自动发电控制(Aut
论文部分内容阅读
二氧化碳排放所导致的全球变暖问题给生态环境带来了不可逆的破坏,实现“碳达峰、碳中和”目标已成为世界各国共同努力的方向。努力提升可再生能源发电占比则是持续推进碳减排,助力碳中和最终目标实现的重要手段。风电作为可再生能源发电的主要形式,也必将迎来大规模的发展。然而由于风电自身所固有的间歇性、随机性及波动性特点,其大规模并网会给电力系统带来较大的随机波动功率,对系统频率带来不利影响。自动发电控制(Automatic Generation Control,AGC)作为电网调度中心能量管理系统中的重要组成部分,是维持系统有功功率平衡、确保系统频率质量的主要手段。如何应对风电大规模接入带来的影响,提高系统频率控制能力,是AGC领域一个新的研究热点。本文利用机器学习技术,针对AGC动态优化控制中两个核心问题开展研究,一是分钟级风电功率预测,二是AGC动态优化控制策略。主要研究成果如下:(1)提出了一种基于长短期记忆(Long Short-term Memory,LSTM)神经网络的1分钟级风电功率超短期预测方法。首先,对风电场历史数据进行预处理,以定位并修正异常数据,提升数据整体质量;然后,利用Spearman秩相关系数法对影响风电功率的气象因素进行筛选,提升模型计算效率;其次,考虑到风电功率具有短时连续性,通过分析风电功率时间序列的自相关性,确定模型时间步长,以提高模型预测精度;最后,利用LSTM神经网络构建了1分钟级风电功率单步和多步预测模型。采用我国北部地区某风场实际数据对本文所提模型进行验证,结果表明本文所提方法可以有效提高风电功率超短期预测的精度。(2)提出了一种基于深度强化学习(Deep Reinforcement Learning,DRL)的AGC动态优化控制策略。首先,将考虑风电并网的AGC动态优化控制转化为马尔可夫决策过程,以最大化累积奖励为控制目标进行多个连续时间断面优化;其次,利用离散型强化学习算法深度竞争Q网络(Dueling Deep Q Network,Dueling DQN)构建AGC动态优化控制模型,并给出其求解策略和工作模式;进一步,考虑到离散化带来的误差以及在求解大规模问题时存在的维数灾难问题,提出基于连续型强化学习算法近端策略优化(Proximal Policy Optimization,PPO)的AGC动态优化控制策略。最后,利用改进的IEEE-14和IEEE-39节点系统,对所提出的基于深度强化学习的AGC动态优化控制策略的可行性和有效性进行验证。
其他文献
多能谱CT(Multi-energy Computed Tomography)可以在单次X射线照射下对分离的能量箱中的光子数进行计数,实现不同物质的识别。由于能量箱狭窄,多能谱CT分解后的物质图像往往具有较低的对比度,对低浓度物质的检测非常困难。同时,在CT浓度检测中需要已知质量衰减系数,约束性较高。针对这些问题,本文提出了基于CT值进行浓度检测的两种像素级浓度检测算法,尝试采用深度学习方法进行浓
数字图像广泛应用于新闻传媒、司法鉴定、法庭取证等各个领域,然而随着信息技术的发展,智能手机、相机的普及使得越来越多强大的数字图像编辑器得到开发和使用。更多的用户能够对图像进行自由随意的处理和修改,使得部分恶意用户有了可乘之机,因此图像的真实性和完整性难以保证。图像模糊操作的取证研究通过技术手段揭示图像操作历史,验证图像数据的真实性和完整性。本文基于传统特征方法和深度学习方法进行了模糊操作取证的研究
根据现行动车组检修规程的要求,动车组的运行里程是决定其进入高级修的时机的主要依据,准确的动车组运行里程预测结果是编制合理的高级修计划的基础前提。目前,随着我国高铁规模不断扩大,投入运营的动车组不断增多,各检修单位所能提供的高级修检修资源显得愈发有限,这对高级修检修计划的编制提出了新的挑战,也间接对动车组运行里程预测方法提出了更高的要求。当前普遍采用以动车组日均走行里程数为关键参数的推算法来预测动车
柔性机械臂具有多自由度、可以实现多方向弯曲以及布置灵活等显著优点,在工业中有广泛的用途。本文针对排水管道检测机器人和清淤机器人的需求,研制了电机-钢丝绳驱动的机械弹簧式柔性臂及摆动气缸驱动的复合软管式柔性臂,应用力学理论分析了两种机械柔性臂的弯曲特性,通过了实验验证并成功应用于排水管道检测与清淤机器人。本论文主要做了以下工作:建立两种柔性臂的弯曲静态模型并进行实验验证。通过力学分析,建立了弹簧在弯
与轮式和履带式机器人相比,步行移动机器人在面对复杂的地形环境时表现出更强的灵活性、适应性和机动性,因此被广泛应用众多领域,成为移动机器人的研究热点。根据支链的形式可将步行机器人分为开链式和闭链式两类,闭链连杆步行机器人因其具有多腿少驱动特性、曲柄周转高频驱动特性、整体闭链高刚度特性及高可靠性特性等优势受到广泛关注,但其单一的足端轨迹反映出其适应能力较低的缺点,限制了其应用场景,因此设计出一款具有高
干涉型光纤传感器由于其抗电磁干扰、耐腐蚀、探测灵敏度高、体积小、易于集成、探头本征无源等突出优势,在水声探测及地震海啸预警等领域中的研究和应用越来越广泛。在振动传感系统中,结合光学复用技术能够形成大规模的干涉型传感阵列,从而实现准分布式传感结构。同时基于声光调制器产生的脉冲信号具有较高消光比,有助于提升准分布式系统整体的性能。此外,干涉信号的相位解调方法也在检测过程中起到了关键性作用。因此以准分布
空间机械臂在太空中要完成许多复杂的任务,而且真空、失重、温差大的恶劣运行环境也为空间机械臂带来了很强的外扰,因此为空间机械臂设计精度高、抗扰能力强的位置控制策略是很有意义的。关节作为空间机械臂的核心组件,对空间机械臂的平稳运行起着至关重要的作用。关节的柔性、驱动电机的输出平稳性均影响空间机械臂的控制精度,因此本文考虑以上因素,对柔性关节机械臂系统的高精度位置控制开展研究。首先采用了基于端口受控哈密
在无人驾驶领域,驾驶决策是当前研究的热点和难点问题。深度强化学习(Deep Reinforcement Learning,DRL)算法寻求以端到端的方式解决问题,但一般需要大量的样本数据,同时面临输入数据复杂性高、模型复杂的问题,导致驾驶策略学习算法收敛速度慢,无法快速学习到有效策略。驾驶策略与多种因素相关,目前采用DRL的方法大多采用简单的约束奖励函数,仅能适应简单交通场景。由于实际交通场景复杂
随着深度学习的发展,全监督学习在计算机视觉、自然语言处理和语音识别等多个领域取得了巨大的进步。全监督学习依赖大量的数据标注,而大规模精细化标注需要很高的成本,影响了全监督学习进一步发展。弱监督学习只需利用不完整、不确切或不准确的数据标注,便可以完成与全监督学习相同的机器学习任务。因此,基于弱监督学习方法的研究具有重要现实应用意义。本文聚焦于以图像级类别标签为弱监督标注的目标定位研究。针对现有弱监督
随着计算机技术与人工智能的飞速发展,利用数字化智能化手段实现非物质文化资源的保护与传承已成为重要的研究课题。拉班舞谱是一种科学的人体动作分析记录体系,在全世界范围内被广泛应用和传播。作为一种便于存储的书面记录形式,拉班舞谱在记录和保存传统舞蹈方面发挥了巨大作用。由于手工记谱繁琐复杂,运用计算机技术的舞谱自动生成方法应运而生。然而,传统舞谱生成框架下的算法依赖于预先的动作分割,无法进行全局优化;普遍