论文部分内容阅读
本文从热防护性能和服用舒适性能出发,对国内外常用消防服面料的性能进行比较研究,探讨影响织物热防护性能和舒适性能的因素;并模拟消防服的多层复合系统,对各层织物进行不同的组合试验,以寻求舒适性与功能性最佳的消防服多层织物组合系统。
文中选择了国内外常用消防服外层织物,如NomexⅢA、PBI/Kevlar、Kermel、芳砜纶、芳纶、阻燃棉等十二种阻燃织物,防水透湿层分别为Nomex、阻燃棉与PTFE(聚四氟乙烯)膜的层压织物,隔热层为Nomex毡、芳砜纶毡和芳纶毡。论文首先对各层织物的阻燃性、热稳定性、表面抗湿性能、拉伸性能、撕裂性能、透湿性、耐静水压等性能进行了测试。
为了模拟消防服的多层复合系统,以外层织物、防水层织物及隔热层织物作为试样,利用混合正交设计方法进行试样组合。对不同组合织物的热防护性能(TPP值)和透湿性能(WVTR)进行了测试,并利用极差分析、方差分析方法对实验结果进行了统计处理,以探讨阻燃外层、防水透湿层和隔热层织物对组合织物系统整体热防护性能和舒适性能的影响。通过分析得到:对于组合织物系统的热防护性能,各层织物的影响程度为:外层大于防水层,防水层大于隔热层;对于组合织物系统的透湿性能,各层织物的影响程度为:防水层大于隔热层,隔热层大于外层。并且通过方差分析得到:在90%置信水平下,外层织物和防水层织物分别对组合织物系统的热防护性能和透湿性能具有显著的影响。
其次,对外层织物热防护性能的影响因素进行了分析。对于消防服用外层阻燃织物,其纤维的极限氧指数越大,则相应的织物越不易燃烧,热防护性能也越好。对于纤维组成相同的织物,其TPP值与织物的厚度、面密度具有显著的线性正相关性,即织物越厚重,TPP值越大,热防护性能也越好。除之以外,总热流量的大小及热源构成也对织物热防护性能有一定的影响,总热流量越大,造成模拟皮肤二度烧伤的时间越短;相反,总热流量越小,造成模拟皮肤二度烧伤的时间越长。而且,在84Kw/m2高热量暴露下,对流/辐射(70/30)热源下织物的TPP值大于对流/辐射(50/50)热源下的TPP值,这说明辐射热的比例越大,皮肤越易受到损伤。
其次,论文讨论了不同热流量下水分对多层组合织物热防护性能的影响。以NI虚拟仪器为平台,以图形化编程语言Labview为工具开发了虚拟温度测试仪,并对织物中的含水量设计了四种不同的湿润状态。研究了不同强度和性质的热源下,外层织物水分的多少对多层组合织物热防护性能的影响。通过实验得到:在16.8 kw/m2低辐射热流量暴露下,对于外层不同湿润状态的组合织物,模拟皮肤到达二度烧伤的时间为:33%水湿润状态时织物到达二度烧伤的时间最短,皮肤损伤最严重,织物66%水湿润状态时,二度烧伤时间与非湿润时相近;织物100%饱和湿润状态时热防护性能较非湿润时好。而在84 kw/m2(50/50对流/辐射)高热流量暴露条件下,对于所有组合试样,湿润状态下的织物TPP值大于非湿润织物,即水分使织物的热防护性能上升。
最后,利用人工神经网络技术,建立了基于Matlab的织物物理性能与热防护性能之间的自适应性神经网络预测模型,并对模型进行仿真及验证。以外层织物的厚度、面密度、组织结构、经密、纬密、紧度、导热系数、极限氧指数、损毁长度共九个性能指标作为BP神经网络输入层的输入向量,输出向量为织物的TPP值,建立了消防服用外层织物的热防护性能预测模型。经过试样的训练和模型预测能力的验证,实际值与预测值的相关系数为0.952,预测平均误差为3.93%。通过比较分析得到,运用神经网络模型比线性回归模型能更精确地预测外层织物的热防护性能。
对于多层组合织物系统,以外层、防水层和隔热层织物的十二个物理指标作为BP神经网络的输入向量,输出向量为多层组合织物的TPP值,中间隐含层神经元个数为六,建立了消防服用多层组合织物的热防护性能预测模型。经过试样的训练和模型预测能力的验证,实际值与预测值的相关系数为0.962,预测平均误差为4.11%。因此,运用该模型能准确地预测多层组合织物的热防护性能。