超嗜热古菌PINA蛋白的生化性质和功能及其甲基化修饰研究

来源 :山东大学 | 被引量 : 0次 | 上传用户:jiangxueying0518
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
实验室前期从冰岛硫化叶菌(Sulfolobus islandicus REY115A)中发现并鉴定了一种新型ATP酶,命名为SisPINA,它能够在体外驱动Holliday junction DNA(HJ)迁移,与HJ特异性核酸内切酶Hjc具有物理上和功能上的相互作用,并协调HJ加工。结构分析表明ATP的结合和水解会引起SisPINA构象发生变化,促进HJ分支迁移(branch migration)。然而,SisPINA在HJ加工和处理中如何与其它蛋白协同发挥作用以及它参与古菌同源重组修复的具体过程还不太清楚,因此,我们需要更多的生物化学、结构和功能研究来充分了解该蛋白质的性质,并揭示古菌中同源重组修复的机制。为了进一步拓展SisPINA的功能,我们首先通过Pull-down分析和分子筛验证发现SisPINA和SisHjm具有很强的物理相互作用。实验结果还显示SisPINA羧基端II-KH结构域是与其它蛋白相互作用的重要部位,而SisHjm的第五个结构域不是它与SisPINA相互作用的部位。目前已有很多关于古菌蛋白甲基化修饰的报道,其中赖氨酸的甲基化修饰方面的研究较多,如嗜酸热S.acidocaldarius中的铁氧还原蛋白,硫磺矿S.solfataricus中的谷氨酸脱氢酶、β-糖苷酶、核糖体蛋白L11、天冬氨酸转氨酶、Sso7d2和RFC大、小亚基,冰岛硫化叶菌S.islandicus中的Cren7和Sso7d等都发生不同程度的甲基化修饰。甲基化修饰在古菌中广泛存在,暗示甲基化修饰在古菌中具有重要生理作用。我们尝试鉴定SisPINA在细胞内的翻译后修饰。冰岛硫化叶菌本底水平表达的SisPINA的质谱验证结果显示,在正常生理条件下SisPINA在细胞内发生磷酸化和甲基化修饰,甲基化修饰主要发生在羧基端的赖氨酸(K474、K479、K498和K500)。前期证明羧基端参与蛋白间的相互作用,我们验证该区域的修饰是否调控与其它蛋白的相互作用或具有其他功能。过表达赖氨酸位点突变PINA(K474A/K479A/K498A/K500A)菌株生长曲线表明甲基化修饰不影响蛋白的生长速率。差式量热分析(DSC)实验发现SisPINA蛋白甲基化修饰不影响蛋白的热稳定性。通过等温滴定量热法(ITC)定量测定模拟甲基化修饰的SisPINA蛋白(K474M/K479M/K498M/K500M)与其他蛋白结合力时发现滴定曲线很平缓,有可能是蛋白浓度过低导致,但当我们提高蛋白浓度时,发现蛋白会发生沉淀,因此我们需要其他方法来定量测定蛋白间的结合力。体外甲基化反应后质谱鉴定发现,甲基化转移酶aKMT蛋白可以甲基化SisPINA蛋白,但在体外用Pull-down和分子筛分析两者相互作用时,发现两者并没有相互作用,可能是两者在体内只发生功能性的结合。我们利用Pull-down实验来检测SisPINA野生型蛋白和甲基化模拟蛋白与Hjm、RFCs的相互作用时发现,与野生型SisPINA蛋白相比,SisPINA甲基化模拟蛋白失去了与RFCs和Hjm的相互作用,可能初步说明甲基化修饰会抑制蛋白间的相互作用。接着我们将这四个赖氨酸位点突变为丙氨酸,Pull-down实验表明,SisPINA(K474A/K479A/K498A/K500A)和 Hjm(RFCs)也没有相互作用,说明这四个赖氨酸位点是蛋白间相互作用的重要部位,之后为了进一步确定准确的相互作用部位,我们分别纯化了赖氨酸单突变体蛋白,利用Pull-down实验验证单个位点突变对蛋白间相互作用的影响,发现单突变体不影响蛋白间的相互作用,说明四个赖氨酸位点协同影响蛋白间的相互作用。甲基化修饰是否是SisPINA在细胞内行使功能必需的,甲基化修饰对SisPINA细胞内功能的影响还需要进一步的研究。我们分析了广古菌Thermococcus kodakaraensis KOD1基因组编码SisPINA的同源物序列,发现T.kodakaraensis中编码PINA蛋白的序列位于CRISPR序列附近,且CRISPR序列潜在可以形成HJ结构,猜测TkoPINA(Tko 0953)可能参与CRISPR相关功能。虽然实验发现TkoPINA与CRISPR序列具有很强的结合活性,但与其它单链DNA、双链DNA和HJ也有很强的结合活性。接下来我们利用Pull-down检测了 TkoPINA蛋白与邻近蛋白的相互作用,发现TkoPINA蛋白与GTP酶(Tko 0951)具有很强的结合能力,而与膜位点决定蛋白MinD(Tko 0952)、膜形成抑制蛋白Maf(Tko 0954)(两者与细胞分裂有关)无明显相互作用。体外生化实验发现MinD具有内切酶活性,且TkoPINA可以抑制MinD的内切酶活性,但两者在体内的作用机制还不太清楚。
其他文献
原发免疫血小板减少性紫癜(Immune thrombocytopenic purpura,ITP)是一种伴有外周血血小板破坏增多的获得性自身免疫性血液系统疾病。临床常表现为外周血血小板减少伴皮肤、
Donor-Acceptor(D-A)环丙烷是一种应用十分广泛的有机合成砌块,尤其是在环状分子骨架构筑中具有显著优势。本论文主要探讨钯催化D-A型乙烯基环丙烷(VCPs)与富烯的环化反应,以
贫困问题是关乎社会稳定和可持续发展的世界性难题。如何消除贫困一直是世界各国家共同关心的问题。消除绝对贫困是实现我国共享发展和全面建成小康社会的重要措施。党的十八
传染病一直是人类面临的巨大挑战之一。在传染病爆发时,如何制定策略使疫情得到有效控制是一个值得研究的问题。数学模型是传染病控制研究的重要工具,但以往大多数研究成果仅能从理论上做出分析与评价,不能很好地满足实际应用需求。本文将传染病的动力学模型与非线性模型预测控制(NMPC)相结合,创建了一种制定传染病控制策略的新方法,该方法能依据疫情的反馈给出切实可行的控制方案。本文主要工作如下:1.在SIR模型的
Sox9基因是哺乳动物睾丸决定基因SRY的主要靶基因,位于雄性Y染色体上。在哺乳动物中,Sox9已被证明在雄性性别决定、睾丸发育和支持细胞分化等过程中发挥关键作用。支持细胞作
草甘膦(Glyphosate),一种除草效果显著的有机磷类内吸型除草剂,极易被植物叶片吸收并传导至植物全身,对一年生及多年生杂草都有很高的活性。因具有广谱、高效、价格低廉等特点,已经成为世界上用量最多的一种有机磷除草剂。然而,已有研究发现其对环境及人体健康存在一定的潜在危害性。泥鳅作为一种常见的淡水鱼类,对水环境污染物的反应较为敏感。本文采用静水实验法、酶检测法就有机磷农药草甘膦对泥鳅的急性毒性和
革兰氏阴性细菌的细胞膜是由内、外两层膜结构构成,在菌体与外界环境进行物质交换时,外膜中的跨膜通道蛋白发挥了极为重要的作用。β-桶装配机器(β-barrel assembly machine
疼痛是一类复杂的感觉,是一种不愉快的感觉和情绪体验,往往伴随有实际的或潜在的组织伤害,是临床上最常见的病症之一,且具有显著年龄差异。慢性疼痛起源于周围神经系统的伤害感受器,目前关于热伤害感受的知识主要局限于温度传感器,包括背根神经节(DRG)伤害感受神经元中表达的瞬时受体电位阳离子通道TRPV1通道。伤害感受器神经元兴奋性升高或对刺激的反应提高是疼痛产生的重要机制,而神经元细胞膜上的电压门控钠离子
丝状病毒科中存在多种可以引起人类以及其它灵长类动物严重出血热的致命病毒,比如埃博拉病毒(Ebola virus,EBOV)和马尔堡病毒(Marburg virus,MARV)。勐腊病毒(Měnglàvirus,
猪非典型瘟病毒(atypical porcine pestivirus,APPV)是黄病毒科、瘟病毒属成员,是造成AⅡ型先天性震颤的主要病原之一,其能引发感染仔猪全身肌肉震颤或者后肢无法站立的情况,