【摘 要】
:
现阶段,钢桁梁桥采用整体节点的形式替代传统的铆接、栓接节点.整体节点作为桥梁中连接弦杆、腹杆以及桥面板下横梁的构件,在使用过程中要求较高的安全性和耐久性。整体节点内部焊缝众多,受力形式复杂,易产生疲劳损伤,所以需要采取有效的方法对整体节点的疲劳性能进行分析。本文基于实测应变监测数据,提出了一种对过车事件及其特征信息自动识别及提取的方法;结合过车事件的特征参数的统计分析结果以及整体有限元模型,确定了
论文部分内容阅读
现阶段,钢桁梁桥采用整体节点的形式替代传统的铆接、栓接节点.整体节点作为桥梁中连接弦杆、腹杆以及桥面板下横梁的构件,在使用过程中要求较高的安全性和耐久性。整体节点内部焊缝众多,受力形式复杂,易产生疲劳损伤,所以需要采取有效的方法对整体节点的疲劳性能进行分析。本文基于实测应变监测数据,提出了一种对过车事件及其特征信息自动识别及提取的方法;结合过车事件的特征参数的统计分析结果以及整体有限元模型,确定了全桥最不利整体节点;对最不利整体节点进行分析,最终确定了整体节点的疲劳性能。本文的研究内容按以下几点进行展开:(1)对原始应变监测数据进行预处理,采用阈值筛选法对过车事件进行自动判别和提取;对不同传感器的数据进行应力极值比较确定行车方向,并利用数据频谱图的峰值频率计算列车车速;构建自适应Butterworth低通滤波器对数据进行处理,并采用雨流计数法判别列车的车厢数;对不同工况的过车事件进行分析,确定交通量特征。(2)对过车事件数据的应力影响线最大值以及应力循环最大值进行聚类图分析以及统计特性分析,初步确定最不利整体节点的位置;建立全桥整体有限元模型并进行修正,施加移动荷载确定全桥最不利整体节点的位置。(3)建立最不利整体节点的有限元模型,确定关键连接部位;基于影响线加载的方式确定内力时程曲线,并进行时程内力的施加,基于热点应力法得到关键连接部位的热点应力时程曲线;参考交通量特性确定关键连接部位的热点日应力谱,并基于Miner线性累积损伤准则的S-N曲线法,在考虑交通量增长的情况下,计算关键连接部位的疲劳寿命,最终得到整体节点的疲劳性能。
其他文献
近年来,国内外发生了多起电动车安全事故。其中,碰撞引起的电动车起火爆炸事故往往会造成较为严重的人员财产损失,究其原因,是电动汽车内部的电池元件发生热失控造成的。因此,对电池元件尺度的安全性研究至关重要。在电动车发生碰撞后,电池包内电池单体无论受损与否、受损程度如何,电池包内全部电池单体一律报废,这造成了极大的浪费和环境污染。本文基于我校HRT车队使用的高倍率钴酸锂电池,研究其在挤压工况下响应特性;
高速铁路桥梁在运营期间,长期接受各种环境因素、运营因素共同作用的影响,桥梁结构的安全性和耐久性在国内外研究中受到广泛关注。对大跨钢桁梁桥而言,当高速列车作为其主要荷载时,桥梁结构静动力性能与普通简支跨铁路桥梁不同,需要重点研究分析。本文具体研究内容如下:加速度响应的时域分析。对于加速度峰值与均方根值指标,分析相邻传感器信号的相关性。对不同工况,确定加速度响应的统计特性,分析列车运行路线、列车编组及
电动汽车产业是我国重点发展的战略性新兴产业之一,是我国应对能源和环境挑战、实现汽车技术弯道超车的重要举措,传统燃油汽车被电动汽车取代的趋势已经不可逆转。而车用动力电池及其相关技术正成为时下的研究热点,荷电状态(State of Charge,SOC)估计则是该领域最重要的研究方向之一。三元锂离子电池能量密度高、一致性好。本文的研究基于三元锂离子动力电池展开,以提高在噪声干扰的情况下SOC值估计的准
对于多跨简支梁桥来说,为了适应主梁的温度变化和混凝土收缩徐变效应,一般需要设置较多的伸缩缝。但是伸缩缝容易损坏,易导致雨水通过伸缩缝渗入桥梁结构,进而降低桥梁结构的耐久性。为了有效解决这一问题,相关学者提出使用桥面连接板代替伸缩缝,桥面连续的简支梁桥既能保证桥梁结构的连续性和行车的平顺性,又能有效减少伸缩缝的数量,降低桥梁维护成本。此外钢-混组合简支梁具有可标准化预制、施工方便、自重轻、经济、绿色
纯电动汽车具有污染小、能源利用率高、结构简单等优势,发展前景广阔。由于缺少发动机的“掩蔽”,纯电动汽车车内低频噪声问题变得尤为突出,大大降低驾乘人员的舒适性。噪声主动控制(Active Noise Control,ANC)技术由于对低频噪声控制能力强、控制目标灵活、布置方便等优点而成为纯电动汽车的一种重要降噪方式。然而,纯电动汽车噪声源较为分散,车内噪声信号具有时变、宽带宽、线性度差等特点,严重影
电动汽车近年来在汽车市场的占有量呈爆发式增长,电动汽车保有量的增加对其动力电池的循环寿命和可靠性提出了更高的要求。定期对电池进行健康状态(State Of Health,SOH)估计和异常工况导致的容量快速衰减问题进行研究具有重要意义。在SOH估计方面,基于模型的估计方法涉及到参数辨识相对过于复杂,在实车应用方面存在困难;在异常工况导致的容量衰减及故障诊断方面,涉及到化学机理的非原位分析需要对电池
环境污染问题的日益严重与不可再生能源的逐渐枯竭加速了全球新能源汽车产业的发展,使新能源汽车正逐步取代传统内燃机汽车。电机驱动系统作为新能源汽车的关键组成部分之一,其安全性和稳定性对驾驶员的财产及生命安全来说至关重要。电机断相会造成三相电流及转矩的波动,造成机械应力损害电机内部零件,电机控制性能下降,长时间运行甚至可能烧毁电机。容错控制可以在发生故障后保证系统能够降额稳定运行,可以更好地提高系统的可
感知系统是无人车实现自动驾驶各项功能的基础,其中基于视觉传感器的感知技术由于低成本的优点被广泛应用于无人车辆的目标检测和自定位任务。目前基于视觉的目标检测技术计算量较大,难以用于性能有限的车载计算平台;经典SLAM技术一般进行了场景静态假设,往往在包含动态物体的真实交通场景中定位精度较差;并且智能硬件平台几乎被国外垄断,发展自主智能硬件平台迫在眉睫。本文基于Atlas 200 DK智能硬件平台使用
社会与时俱进,广大群众日常生活水平的大幅提高,中国私家车使用量与日俱增,城市交通设施交通量急剧增长。对于城市的智能交通系统来说,信号分配时的优化也好,移动路径导航计划也好,都依赖于与之相关的交通量数据。应用动态同步检测的流量信息,掌控下一个时长的公路交通,精准度不太好。因此,公路交通量短时的预报是城市公路交通科技应用领域学术研究工作的热点板块。深度学习是将深层次神经网络模型的数个暗藏层重叠,并将使
桥梁设计质量对工程全生命周期影响重大,现有设计方式有待提高效率,解放生产力。BIM技术的应用丰富了设计成果交付形式,体现了土木行业迈入信息化的发展趋势,但同时也有待提高应用效率。目前行业内存在通过二维图纸“翻模”设计的“逆向”过程,为改变这一现状,业内提出了BIM正向设计概念。然而对于这一概念的定义与实现方式仍未有定论。因此,本文主要围绕预应力混凝土连续梁桥这一桥型为研究对象,对BIM正向设计的概