论文部分内容阅读
镁合金具有密度小,比强度和比刚度高,良好的阻尼减震性能,机械加工方便,特别是易于回收利用,具有环保特性;而且在自然界中镁的资源十分丰富。镁的这些优点使其被公认为是面向21世纪的高新技术产业中最有希望大量采用的金属材料之一。但是现有镁合金存在着弹性模量低,强度低,耐磨性能差,耐热性能差等不足,这极大地制约了镁合金的发展应用。向镁合金中加入高强度、高弹性模量、高熔点的纤维、晶须或颗粒等制成镁基复合材料,是提高镁合金性能的有效途径之一。本文针对镁合金的高温强度与蠕变性能较差的缺点,以工业上广泛应用的低成本的ZM5镁合金为基体,通过原位复合技术获得自生的TiC、MgO或Mg2Si颗粒增强的镁基复合材料,提高材料的高温强度和抗蠕变性能,促进其在200℃左右的高温领域下应用。 在真空感应炉中氩气保护下,通过在镁合金熔体中分别加入Ti-C-Al粉末预制块、SiO2或Si等获得自生的TiC、MgO或Mg2Si颗粒增强镁基复合材料。通过光学显微镜、SEM、TEM、XRD、EDAX、电子拉伸机和高温蠕变仪等分析测试手段,对自生颗粒增强的镁基复合材料的制备工艺、组织结构及力学性能等进行系统的研究。主要研究结果如下: 1、对放热反应法、直接反应法和铸造法三种原位复合工艺制备TiC、MgO和Mg2Si粒子增强镁基复合材料的制备机理及工艺、显微组织和力学性能的系统研究和比较发现,用铸造法制备的自生Mg2Si增强镁基复合材料,不仅工艺简单,而且有良好的力学性能,尤其是高温性能,因而有很好的工业应用前景。 采用放热反应法在Mg液中加入Ti-C-Al、Ti-C或Ti-C-Mg粉末预制块均能得到TiC粒子,但反应获得的TiC粒子烧结严重,无法获得分布均匀的镁基复合材料;采用两步法,即先制备出TiCp/Al预制块,然后将其加入镁熔体中,通过优化工艺成功地制备出TiC粒子分布均匀的TiCp/ZM5复合材料,并提出了TiCp/Al预制块在镁液中的熔化机理。TiCp/Al预制块在Mg液中的熔化机理是基体Al熔化扩散进入到Mg液中,而聚集的TiC粒子需通过剪切破坏和Mg液流动才能进入到Mg液中。TiC粒子与ZM5基体之间的界面洁净,没有明