基于超概率编码的多类分类器

来源 :浙江大学 | 被引量 : 0次 | 上传用户:realg007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This thesis proposes a new approach to improve multiclass classifica-tion performance by employing Stacked Generalization structure and One-Against-One decomposition strategy. The proposed approach en-codes the outputs of all pairwise classifiers by implicitly embedding two-class discriminative information in a probabilistic manner. The encoded outputs, called Meta Probability Codes (MPCs), are inter-preted as the projections of the original features. It is shown that the MPC, compared to the original features, has more appropriate fea-tures for clustering. Based on MPC features, we introduce a cluster-based multiclass classification algorithm, called MPC-Clustering. The MPC-Clustering algorithm uses the proposed approach to project an original feature space to MPC, and then it employs a clustering scheme to cluster MPCs. Subsequently, it trains individual multi-class classifiers on the produced clusters to complete the procedure of multiclass classifier induction.The performance of our proposed algorithm is evaluated by applying it on20different datasets from the UCI machine learning database repository. It is shown that our algorithm improves the classification rate by almost2.4%on average. Moreover, the performance of the projected features is also evaluated without applying a clustering step. That is, a known multiclass classifier is trained directly on the pro-jected samples. It is shown that the classification accuracy of SVM and k-NN trained on the projected features improved by0.99%and3.62%, respectively.In this thesis, we also study the performance of the MPC features on two real world applications, face and facial expression recognition via proposing an MPC-based framework, in which any feature extractor and classifier can be incorporated in the proposed framework using the meta-feature generation mechanism. In the experimental studies, we use some of the state-of-the-art and promising multiclass classi-fiers and information representation techniques. The results of the extensive experiments conducted on three facial expression datasets; Cohn-Kanade, JAFFE and TFEID, and two face recognition datasets; FERET and CAS-PEAL-R1, show that the MPC features promote the performance of face and facial expression recognition inherently.
其他文献
虚拟现实是发展到一定水平上的计算机技术与思维科学相结合的产物,它的出现为人类认识和改造世界开辟了一条新的途径。虚拟现实技术以其实时三维空间表现能力、人机交互式的
文章选取了七个代表点方言,来比较温岭方言语音的内部差异。其中有些语音差异既是地域上的差异,同时又是新老派之间的差异。内部差异主要涉及分尖团、侯韵字的读音、果开一见
针对骨骼医学图像的计算机后处理技术可以改善图像观察效果、实现智能辅助诊断,进而推动相关疾病影像学诊断技术的发展和完善。本文首先综述和分析相关技术发展现状,进而针对
脱机手写体汉字识别是模式识别研究领域中的难点,但是由于脱机手写体汉字识别有广阔的应用背景(如金融表单自动处理、自动阅卷等),并且囊括了模式识别领域中的所有典型问题,
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
信息技术和网络通信技术的飞速发展,极大地加快了可视媒体即视觉类媒体数据的获取与传播。可视媒体数据的特点和广泛应用及在一些特定场合中的使用,导致了一些特殊的安全性问
目的研究血塞通联合α-硫辛酸治疗对糖尿病周围神经病变(DPN)患者的神经传导速度的影响。方法将纳入研究的96例DPN患者随机分为观察组50例和对照组46例。对照组在常规治疗基础