【摘 要】
:
深空探测技术的发展对于确立国家的地位至关重要,空间微低重力环境模拟则是促进空间探测技术发展的关键环节。随着嫦娥五号携月壤返回地球,我国的航天工程迈入了新的历史进程,火星探测亦已列入探索计划。面对越来越多的外太空探测任务需求,对空间微重力实验环境模拟也提出了更高的要求。本文通过分析现有各微重力实验方法的优势及不足,提出基于电动式磁悬浮原理的重力补偿方式,并开展相关研究。首先,磁悬浮重力补偿原理的确定
论文部分内容阅读
深空探测技术的发展对于确立国家的地位至关重要,空间微低重力环境模拟则是促进空间探测技术发展的关键环节。随着嫦娥五号携月壤返回地球,我国的航天工程迈入了新的历史进程,火星探测亦已列入探索计划。面对越来越多的外太空探测任务需求,对空间微重力实验环境模拟也提出了更高的要求。本文通过分析现有各微重力实验方法的优势及不足,提出基于电动式磁悬浮原理的重力补偿方式,并开展相关研究。首先,磁悬浮重力补偿原理的确定及系统设计。针对星球车行走微重力环境模拟实验目标,对现有各类重力补偿方法及重力补偿实现原理进行对比分析,总结其各自的优缺点,提出利用磁悬浮原理实现非接触的重力补偿方法,模拟等效微重力环境。通过系统可行性分析,对比系统合格性指标,将电动式磁悬浮系统进行模块化分装,分析磁悬浮系统对整体系统运动学影响,确定基于电动式磁悬浮的重力补偿原理,完成重力补偿系统的原理设计。其次,结合重力补偿功能需求的电磁悬浮特性分析。针对电动式磁悬浮系统,进行磁场动、静态分析,永磁体磁性能磁场静态分析。从Halbach阵列永磁体磁场分布原理出发,结合实际需求对稀土磁体排列方式排列重组,使之具有更良好的磁性能。进而利用麦克斯韦方程组建立磁场动态分析模型,通过仿真软件对系统进行仿真分析,从改变磁场变化率以及磁气隙角度出发,对磁浮力以及磁场涡流损耗进行综合分析,确定转速与气隙的最佳配比关系,同时搭建小型实验平台,为后续的控制系统提供物理载体。最后,重力补偿控制机理分析及控制策略制定。结合系统整体分析,为满足系统对阻尼的要求,设计随动可控嵌入式主动阻尼装置。对伺服控制方式进行选择,确定时变量与不变量,利用经典PID控制方法对系统进行控制,以电机转速为控制对象,通过对电机转速进行实时控制从而达到对力的控制。推导系统传递函数,利用Simulink对PID控制中系数进行确定,最终实现系统的稳定控制。
其他文献
自润滑关节轴承主要应用于航空航天领域,关节轴承高频摆动试验机作为评价关节轴承摩擦磨损性能的检测设备,试验机最重要部分的就是它的摆动系统。由于对关节轴承要求的逐渐提高,对关节轴承试验机的摆动频率的要求也会随之提高,因而摆动系统不光要满足强度的需求,还需要考虑摆动系统的动态特性。本文针对机械、电磁和液压三类摆动系统进行研究,并且对机械高频摆动系统在30Hz以上的试验过程中出现的问题进行分析研究,具体的
伴随着中国乡村振兴战略步伐的不断加快,社会对人才的需求也发生着一些微妙的变化。高职教育作为一类为社会培养基层技能型人才的教育组织,不仅承担着传授基础高职教育的义务,更肩负着为乡村振兴发展培养多元性人才的重任。然而,从目前高职教育人才培育模式上看仍存在很多不利于乡村振兴人才培育发展的问题,因此高职教育工作者必须在深入挖掘这些问题的同时探索更多人才培育创新的新途径。
在航空飞行器中,直升机凭借着其高机动及高效悬停的特性,在军用和民用的各个领域被广泛应用。先进的旋翼驱动装置作为直升机的动力及控制核心,成为了国内外研究的重点。本课题研究了一种新型的直升机旋翼并联驱动装置,以3PSS+S型并联机构取代传统直升机的自动倾斜器,利用并联机构高刚度、多自由度的特点进一步提高和改善驱动装置的性能。相较于传统直升机驱动装置,新型并联驱动装置主要优势在于结构更加简单,减少了废阻
电磁发射轨道炮在发射炮弹的过程中,伴随着热量的产生,且这些热量主要来源于轨道通电后产生的焦耳热和轨道与电枢摩擦产生的摩擦热,这些热量只有一小部分传播到空气当中,其余的被轨道吸收,轨道再与周围介质进行温度传递。在空气中,热传播的途径主要有空气对流、热传导和热辐射,但是伴随着航空航天技术的发展,在太空以及月球的环境下,对于电磁发射装置的散热研究就显得必不可少,尤其在没有空气介质的真空环境热传播的途径只
近年,得益于国家大力推进公路治超、大气污染和“公转铁”政策的鼓励以及秦皇岛市旅游城市的战略定位,秦皇岛地方铁路公司的货运量、客运量均有所增多,但是经济效益却没有得到明显提高。因此,为了积极应对外部环境的动态变化,提高地方铁路的市场竞争力,本文将对地方铁路公司当前的运输生产模式、列车运行图编制和运行优化等问题进行深入研究,基于此,本文的主要研究内容如下:首先本文对文章的选题背景、研究意义、国内外列车
蜂窝夹层结构具有比强度、比刚度高、质量轻以及吸音、隔热、减振等诸多优点,在导弹以及飞机上得到了广泛应用。现有研究表明,拓扑优化后的无人机翼肋结构外部以及内部边界多为曲线。所以在对其进行蜂窝夹芯结构设计时,无法通过传统经验公式或建立等效模型来评估该结构的质量、强度、刚度等;并且对于复合材料蜂窝芯子而言,当其应用于边界复杂的结构中时,加工时会出现芯子边界层断裂以致力学性能降低的问题。因此本文主要围绕上
铝合金型材具有质量轻、比强度高的特点,在航空领域应用较为广泛。铝合金型材弯曲件是航空飞行器主要承力结构的重要组成部分,其成形精度将直接影响飞行器的装配质量与气动性能。铝合金型材弯曲件主要采用滚弯工艺进行成形,成形过程存在回弹量大、变形过程复杂等问题,导致成形精度难以控制,因此有必要对型材滚弯工艺和精度补偿技术进行深入研究。本文基于四辊滚弯机修正了滚弯数学模型,提出了曲率误差补偿方法,通过迭代补偿使
直升机机体与光电吊舱之间的隔振平台是保证观瞄系统视场稳定的重要设备,对直升机的察打精度有着重要的影响。鉴于某型察打一体武装直升机原有隔振平台的性能达不到要求,本文为该型直升机设计了一款基于被动隔振技术的隔振平台。论文主要工作如下:(1)根据该型直升机机载跟瞄系统的振动环境和对隔振平台结构的具体要求,设计了一款具有偶数支隔振器并联、直立安装的隔振平台结构。隔振器材料选用60Si2Mn A,10Cr2
300M钢的强度和断裂韧性较高,抗疲劳性能较好,因此在飞机起落架等大型承力结构件上应用广泛。300M钢制成的高筋类模锻件形状复杂,型腔不易充填,成形载荷大。因此,需要对300M钢热变形行为以及高筋类锻件的成形工艺与极限进行系统研究。本文用热模拟试验机进行了热压缩试验,分析了300M钢的流变应力曲线并对曲线进行了摩擦修正,构建了300M钢的本构模型,揭示了流变应力曲线的变化规律。同时在热压缩实验结果
航空EHA(Electro-Hydrostatic Actuator,电静液驱动执行器)系统作为未来大型客机和先进战机的核心系统,是实现航空航天高端装备智能驱动的关键技术,航空EHA的轻量化设计是全世界的迫切需求。航空EHA管路和集成块排布优化设计,再辅以增材制造技术一体化成形可以实现其减重的目的。但是管道增材制造成形后,内部存在如翘曲变形、浮渣等缺陷,如何提高管道的成形质量(特别是水平管道)是航