论文部分内容阅读
3-Lie代数与几何学,物理学,弦学等学科有着密切的关系.但足3-Lie代数与Lie代数在结构上有很大的差异.本文主要研究两方面的问题.首先研究由一般线性Lie代数g,借助于线性映射f,实现3-Lie代数L.并对n2维3-Lie代数L的结构进行研究.
证明了n2-维3-Lie代数L足半单的,且中心Z(L)为0,3-Lie代数L的Cartan子代数为极大Torial子代数.还进一步讨论了3-Lie代数L与一般线性Lie代数g之间的关系,等等.还研究了n2-维3-Lie代数L的内导子代数与导子代数的结构和维数,采取分块矩阵的形式,给出了每一个内导子,导子的具体表示形式.
第一部分,给出了n-Lie代数的基本慨念,符号以及一些结论.例如:n—Lie代数的定义,子代数,导子代数,理想,中心等等.
第二部分,通过线性映射f,由一般线性Lie代数g实现了3-Lie代数L.并给出了当线性映射.F=tr(-)时,3-Lie代数L的一些结论.
第三部分,给出了以矩阵单位为基,3-Lie代数L的乘法表,证明了内导子代数的基有五类,并给出了内导子代数的结构和维数.
第四部分,主要研究n2维3-Lie代数L的导子代数的结构和维数.