论文部分内容阅读
本文利用高压、落管、离子束溅射等技术,研究了远离平衡条件下 Fe-Si 合金的结构演化及β-FeSi2相的形成。 研究了 Fe-66.7at.%Si 合金在高压和落管无容器条件下的凝固行为。与常压下凝固的典型共晶组织不同,高压条件下 Fe-66.7at.%Si 合金的凝固组织为初生ε相树枝晶加离异共晶。高压下凝固组织的变化主要是与压力对相图的影响和对凝固过程中溶质原子扩散的影响有关。通过引入压力参量,推导了高压凝固过程中的成分过冷判据,并应用该判据分析了高压凝固树枝晶组织的形成机理。研究了 Fe-66.7at.%Si合金液滴的无容器凝固过程中形核和生长方式随过冷度和冷却速率的变化规律。随样品直径减小,初生α相发生“小平面生长→非小平面生长”转变,ε+α共晶组织形态也发生了改变。在直径 0.2 mm 合金小球中,同一样品的不同位置凝固组织也发生了这种转变。这是由于不同的过冷度和冷却速率引起的。 采用闭管化学气相输运法制备得到β-FeSi2单晶,并研究了温度场和载荷气体压强对晶体生长的影响。 采用离子束溅射铁靶的方法在加热的 Si(111)衬底上得到了不同种类的铁硅化物。当衬底温度为 973 K 时得到厚度为 500 nm 的单相、多晶和局部外延的β-FeSi2薄膜。薄膜和 Si 衬底之间界面明显,没有中间层。采用离子束溅射法制备了 4 周期和 10 周期的[20 nm Fe/64 nm Si]多层膜,所得多层膜在 973 K 真空退火 60 mins 得到厚度分别为 360 nm 和 850 nm 的单相 β-FeSi2薄膜。 利用原位 X-射线衍射法进行了 Fe/Si 多层膜的结构和互扩散研究,确定出 Fe/Si多层膜在低温(573 K-623 K)退火过程中的互扩散系数为: DL (T )= 4.53×10-22 exp(-0.16eV/KBT) [m2/s]