【摘 要】
:
新疆天文台拟在新疆奇台建设110m口径射电望远镜(QTT),其将成为世界最大全可动射电望远镜,工作波段为150MHz-115GHz,指向精度要求2.5″。射电望远镜性能要求越高,天线结构设计则越复杂,风载荷对望远镜指向精度的影响也越突出,特别是在高频波段观测。如何在设计时保证天线结构刚强度,在观测时提高望远镜有效观测时间,都需要准确的台址风场特性信息。因此,研究QTT台址风场环境对望远镜观测性能的
论文部分内容阅读
新疆天文台拟在新疆奇台建设110m口径射电望远镜(QTT),其将成为世界最大全可动射电望远镜,工作波段为150MHz-115GHz,指向精度要求2.5″。射电望远镜性能要求越高,天线结构设计则越复杂,风载荷对望远镜指向精度的影响也越突出,特别是在高频波段观测。如何在设计时保证天线结构刚强度,在观测时提高望远镜有效观测时间,都需要准确的台址风场特性信息。因此,研究QTT台址风场环境对望远镜观测性能的提升具有重要意义和实用价值。本文阐述了风场研究所涉及的大气边界层和数值模拟基础理论,研究了风场数值模拟的地理模型构建、网格划分、边界条件设置、求解参数设置等流程。为了验证数值模拟的准确性,本文结合台址现状提出基于单点测风塔实测数据对数值模拟进行误差评估。仿真结果与实测数据比较,整体趋势吻合,风速均方根误差值(RMSE)均小于1m/s,最小风速RMSE达到0.2m/s。利用实测数据对每月极大风速、日每时极大风速和风向玫瑰图进行了分析;通过数值模拟分析研究了天线位置风速剖面、台址风场流线和台址55m高度风速云图。基于以上分析对天线位置来风进行评估,将测风塔55m高度实测风向玫瑰图作为参照,预测天线位置要比测风塔位置在南北方向上的来风频率少,在东西方向上的来风频率多。对于天线外围抗风设计,认为应主要集中在天线北方向的峡谷口和西南方向的“L”形山体。若从峡谷口先开展抗风工程,其工程量相对较小,处理起来也更容易。随着对QTT望远镜预研的深入,需要在天线附近增加测风塔,为望远镜提供更精确的实时风场数据。由于传统测风塔布置方法无法对测风塔拟设点的可靠性做出定量化评估,本文提出基于数值模拟优化测风塔位置的方法。实施方案基于规范参数设置边界条件,同时简化风场模型。得到的仿真结果与实测数据比较,整体趋势吻合,满足精度需求。在距天线150m的范围初选4个测风塔拟设点,经分析P2点与天线位置的风速RMSE最小,测得的数据更能表征天线区域的风场特性。
其他文献
“住”是人类生活的基本需求之一,随着我国经济社会的高速发展,公众生活品质不断提升,对居住条件的需求也随之提高,房地产企业为了在激烈的市场竞争中夺得一席之地,需要从以往的高周转模式转向满足人们需求的高价值模式。价值源于需求,房地产企业要开发出高价值产品,就必须充分掌握潜在客户对住宅的需求,但以往收集需求的常用方法难以准确定位潜在客户、难以大范围收集需求信息,使得房地产企业向高价值模式的转型面临困难。
亚极光区分离质子极光弧是由于环电流质子沉降所形成,而内磁层中波粒相互作用是导致环电流质子沉降到电离层的重要物理机制,因此研究亚极光区分离质子极光弧的形成机制是研究电离层-磁层耦合的重要课题。为此,本论文基于多卫星协同观测研究电磁离子回旋(EMIC)波导致环电流离子沉降的物理机制。本论文研究了EMIC波导致环电流离子沉降的典型观测事件,通过利用电离层卫星和磁层卫星对电离层和内磁层进行实地协同观测,从
目前,在移动便携式电子产品市场的强烈需求推动下,低功耗将成为芯片的关键设计指标。尽管可以采用电路与系统级的方法来降低功耗,但芯片能效的根本限制仍然在于金属氧化物半导体场效应晶体管(MOSFET)的工作原理及其不变的物理极限,即在室温下,玻尔兹曼分布载流子不能够使MOSFET的亚阈值摆幅低于60 m V/dec。该物理极限最终决定了互补金属氧化物半导体(CMOS)技术可获得的最低能耗。隧穿场效应晶体
随着我国的综合国力不断增强,城镇化进程逐渐加快,国家的交通基础设施建设也取得了重大发展。而桥梁作为交通基础设施的重要组成部分,其运营安全问题受到了国内外学者的广泛关注。由于传统的直接量测法需要昂贵的成本和繁琐的操作,很难满足于目前桥梁检测的需求。因此,具有便捷、经济和高效等优点的间接量测法走进学者们的视野。该方法只需在移动小车上安装传感器,然后对车体信号进行分析即可获得桥梁的动态信息。本文以简支梁
由于自然灾害、环境侵蚀等因素影响,使得我国现役使用时间较长的建筑结构不断劣化,导致其正常使用功能受到了制约,甚至造成了巨大经济损失。整个社会对于现役建筑的安全性也越来越关注,通过结构损伤识别评估来避免建筑结构潜在的危险也显得越来越重要。但是由于结构的复杂性和环境、人为等因素存在,如何有效地识别结构损伤仍然是一个巨大的挑战。本文基于单自由度统计矩理论,使用贝叶斯思想和gibbs抽样相结合的方法,提出
薄层复合正渗透(TFC-FO)膜是一种渗透性好、截盐率高且结构可控的新型分离膜。一般由聚酯筛网/无纺布、多孔支撑层和超薄聚酰胺(PA)活性层组成,然而复合膜的性能却受聚酰胺活性层的结构、表面亲水性的影响较大。水铝英石纳米管(Imogolite,INTs)是一种具有优良亲水性的无机纳米材料,故而本文提出利用水铝英石纳米管作为聚酰胺薄层的改性材料,采用表面沉积法分别在正渗透膜的聚酰胺薄层或聚砜(PSF
电磁脉冲(EMP)与浪涌携带的高能量冲击会使整机或电子元器件损坏,瞬态电压抑制二极管(TVS)具有响应快、吸收功率高等优点,是常用的防护型器件。将其并联到工作电路两端,会以常规不到1 ns的时间吸收成千上万的浪涌功率将电压钳位到预定值。目前成熟的Si-TVS产品由于硅(Si)的材料特性限制表现出高漏电、低钳位电压、工作温度低和串并联形成组件等缺点,第三代半导体碳化硅(SiC)所具有的宽禁带、高临界
[背景] 器官移植的成功往往依赖于毒性、非特异性免疫抑制剂的应用。而这类药物常常导致机会感染、恶性肿瘤等并发症的发生,根本的解决出路之一就是寻找诱导抗原特异性耐受或实现抗原特异性抑制的治疗方法和策略。器官移植物的基因治疗和基因修饰的耐受性树突状细胞(dendritic cell,DC)诱导免疫耐受的相关进展为临床器官移植提供了极具潜力的治疗方法。尝试应用免疫抑制性调节分子基因修饰移植器官进行
随着集成电路产业发展和半导体工艺的进步,芯片规模越来越大,单颗芯片能实现的功能越来越多,单个公司或设计团队完成复杂片上系统(System on Chip,So C)的所有功能变得越来越困难,由多方合作设计芯片或使用第三方硬件知识产权(Intellectual Property,IP)核完成设计的设计模式越来越常见,而在多方合作中硬件IP核也更容易发生设计信息泄露,这给IP核安全带来威胁。因此如何有