【摘 要】
:
器官是高等动物重要的功能单位,对器官结构的研究有利于了解器官的功能,并支持相关的疾病研究。利用近年来发展的显微光学成像技术,可以实现器官水平的细胞分辨三维成像。基于高分辨率三维数据,数字切片技术可以实现对完整器官在任意角度获取细胞分辨率的切片。然而,如此高分辨率的成像获取的单套数据可达TB级甚至10 TB以上,给数字切片带来了大数据挑战。现有的数字切片方法工具仅能对GB级数据切片。实现10 TB以
论文部分内容阅读
器官是高等动物重要的功能单位,对器官结构的研究有利于了解器官的功能,并支持相关的疾病研究。利用近年来发展的显微光学成像技术,可以实现器官水平的细胞分辨三维成像。基于高分辨率三维数据,数字切片技术可以实现对完整器官在任意角度获取细胞分辨率的切片。然而,如此高分辨率的成像获取的单套数据可达TB级甚至10 TB以上,给数字切片带来了大数据挑战。现有的数字切片方法工具仅能对GB级数据切片。实现10 TB以上大数据切片,并将切片时间控制在满足应用需求范围,是亟待解决的问题。本文以细粒度的数据分块组织格式为基础,分别解决了三维大数据切片中冗余I/O问题和批量三维数据数字切片计算两个关键问题,并构建了一个用于亚微米分辨完整器官三维图像的大数据导航切片工具。具体如下:针对三维数据切片场景利用细粒度分块优化了分块存储格式。将三维大数据分成细粒度小块存储,解决了现有较大尺寸分块存储格式下,切片计算读入冗余数据过多的问题。对于细粒度分块产生的海量小数据文件,采用了合并存储来减少文件数量。基于细粒度分块格式,切片计算过程中载入的数据量下降了87%,切片性能提升至2倍以上。结合JPEG压缩和轮廓约束优化,进一步将切片过程载入的数据量下降70%以上,提升至约7倍的切片性能。建立了高通量的并行三维图像数字切片计算方法,解决了批量三维数据数字切片计算问题。该方法利用高性能并行方法,构建了线程级分布式并行数字切片方法,提升了并行数字切片分布在多节点上运行的效率。使用基于加法的拼接策略,将多个小数据切片单元拼接得到大数据完整切片,并在模型数据、生物图像数据上验证了切片及拼接方法的正确性。在性能上,该切片方法实现了在5秒内对约4.8 TB的小鼠完整心脏细胞分辨率三维图像的数字切片。在方法研究基础上,进一步构建了三维图像交互式数字切片系统。该系统可以便捷直观地定位到三维图像大数据中目标切片角度和位置,并获取对应方位完整器官高分辨切片图像。并将其应用在获取标准方位切片和多角度解剖研究中,展现了对大体积三维图像数据多角度切片的能力。综上所述,本文通过细粒度分块组织存储方案和高性能并行计算方法,减少了数据读取,加快了切片计算,实现了高效的细胞分辨三维图像数据数字切片,提供了快速获取目标方位切片图像的交互式切片工具。
其他文献
因没有电刷和滑环装置,无刷双馈感应发电机可以运行得更加稳定和可靠,有望成为未来几年独立发电模式的主流电机之一。功率绕组电压频率和幅值的稳定性是独立发电模式下的主要控制目标。同时,独立发电系统对异常工况非常敏感,特别是不平衡和非线性负载会导致功率绕组电压和电流产生严重不平衡和畸变。功率绕组电压中负序分量通常代表不平衡负载的影响,而3、5和7次谐波分量则代表非线性负载的影响。本文分别提出了负序电压补偿
近年来,食品污染对人类健康造成极大的威胁,食源性病原体是导致疾病发生的直接原因之一。食源性病原体会产生特定的挥发性生物标记物,金属氧化物半导体(MOS)气体传感器能对其进行实时有效监测,从而及时预警,降低人类感染致病菌的风险。本文选取李斯特菌产生的标记物二甲基三硫(C2H6S3)作为被检测气体,对纳米WO3的微结构(晶面及缺陷)进行调控,建立了材料微结构与气敏性能之间的构效关系。同时,将密度泛函理
活体光学分子成像不仅可以长时程在体追踪细胞的迁移、聚集和接触等动态行为,还可以直观地呈现细胞内分子信号的动态变化,为在体研究细胞功能提供有力的工具。肿瘤免疫疗法利用免疫系统可以识别并清除肿瘤这一特性来治疗肿瘤,在临床上表现出独特的优势。细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTL)是免疫系统中杀伤肿瘤细胞的主要效应细胞,在清除肿瘤过程中发挥着关键作用。肝脏作为一个具有
大学英语教科书是培养跨文化交际力和实现跨文化理解的重要载体。大学英语教科书如何阐释和建构他者,对塑造大学生的他者文化观,引导大学生如何看待他者,与他人相处,形成跨文化理解力具有不可替代的作用。研究大学英语教科书中的“他者”变迁不仅有利于推进批判教科书研究中有关“他者问题”重要议题的研究,对认清大学英语教科书中的他者内涵,理解大学英语教科书文化变迁的本质,改进大学英语教科书文化选编现实,实现大学英语
数据规模的迅速增长和数据特征的多样化使得数据分析高速发展,也使得数据分析需要处理的对象越来越复杂,进而需要更多的变量特征来描述这些复杂的对象,也就产生了高维数据.在高维问题中,财务经费和伦理道德等原因又使得观测样本量往往远小于高维数据的特征维数,而且普遍存在于医学、生物遗传学、军事学等众多领域.本文研究小样本下高维线性回归模型中的变量选择问题和模型预测能力.利用传统的变量选择方法SCAD(the
载体材料的安全性是纳米药物首要考虑的问题。蛋白基纳米载药系统具有生物相容性好、生物可降解、无毒等特点,在研究和临床应用中引起了广泛关注。nab(nanoparticle albumin-bound)技术是目前制备蛋白基纳米载体最成功的技术,采用该技术生产的白蛋白结合型紫杉醇注射液Abraxane?自2005年批准上市后获得了巨大成功。然而,nab技术具有工艺流程复杂、生产能耗高、引入有毒有机溶剂等
太赫兹波具备能量低、频谱宽、穿透性强以及特异性吸收等诸多优点,因此太赫兹频谱技术被广泛地应用于物质的分析与检测中。另一方面,机器学习方法具有无人工干预、自动化与规模化的优势。在机器学习的推动下,太赫兹频谱技术中的数据分析能力和应用范围得到了显著提升。但是在面对无标注类型的太赫兹频谱数据时,常用的机器学习方法受到了一定的限制。本论文将无监督机器学习领域中的因子分析法和独立成分分析法进行了扩展,使其适
随机过程是概率论的一个重要研究领域,对一些随机现象的刻画,需要用随机过程来研究.随着科学技术的发展与完善,随机过程理论广泛应用在物理、生物、经济、管理、工程技术等众多领域,同时这些领域的需求也促进了随机过程理论的发展.近年来,很多学者研究了轨道为凸函数的随机过程的性质、不等式以及应用,取得了一系列的结果.本文主要研究了两类凸随机过程及其不等式.在均方连续、均方可微、均方可积的意义下,类比凸函数的思
第一部分PARP1参与新生小鼠心脏再生和心肌细胞增殖背景:成年哺乳动物心脏在受到损伤时不能再生,结果导致瘢痕修复和心脏重塑。而低等脊椎动物如斑马鱼的心脏能够终身保持再生能力,常用作研究心脏再生的动物模型,但是其应用受到种属进化差距较大的影响。最近研究发现新生小鼠心脏也能够再生,这为心脏再生的研究开辟了一条更为方便的道路。PARP1作为一种存在于细胞核内的蛋白修饰酶,其在心脏发育和心肌细胞肥大中都有
该课题组前期从发酵蔬菜中分离并鉴定出一株凝结芽孢杆菌13002,在前人的研究基础上,该研究进行凝结芽孢杆菌发酵乳生产工艺的优化。以凝结芽孢杆菌13002、保加利亚乳杆菌CGMCC 1.290、嗜热链球菌CGMCC 1.2741共发酵的新型发酵乳为研究对象,以不同菌种复配比、菌种接种量、发酵基低聚果糖添加量进行单因素实验,再以感官评分为响应值,通过Box-Behnken中心组合建立数学模型研究发酵乳