论文部分内容阅读
无线图像传感器网络(WISNs)在远程、实时、精准信息监测领域有着广泛发展潜力。针对传感器功耗限制强、感知环境复杂、图像重要区域重构质量不高、图像传输缓慢且抗干扰能力弱等挑战,探索适合于大数据量、强噪声的野外监测图像高效编码与传输是解决问题的关键。以野生动物监测作为应用场景,本文以兼顾无线传感器网络模式下野生动物监测图像的重构质量、传输效率和能量消耗之间的平衡为目标,力图实现野生动物监测图像的高效编码与传输。研究基于改进直方图对比度的显著性目标检测方法,进而生成显著性目标区域的掩模图像,为提升图像中重要区域像素点的传输优先级提供参考依据;探索一种无线传感器网络模式下图像渐进式压缩编码算法以及分布式机制下图像数据分配的高效传输策略,保障了图像重点区域的重构质量以及网络资源的合理利用;提出一种基于改进自编码器的缺失图像自动恢复算法,提高复杂条件下图像样本的可利用性,为后续相关科学研究提供数据保障。(1)设计了基于WISNs远程监测系统,并对图像样本库进行建立,解决了野外环境信息获取滞后的问题。本文总共建立了包含马鹿、野猪、狍子、猞猁、貉、斑羚在内的10720张野生动物监测图像样本库,为后续开展算法实验提供了研究素材和数据保障。同时制作了野生动物区域的Ground truth真值图像,为后续野生动物显著性目标检测、压缩编码与传输等实验对比提供理论依据。(2)提出了基于改进直方图对比度的图像显著性目标检测算法,克服了野外监测图像背景复杂、数据量大、噪声干扰严重等问题。在传统的直方图对比度算法的基础上,本文结合图像主结构提取、边缘检测和位置显著图等策略,对图像显著性目标区域进行检测及提取,实现了图像纹理信息的平滑与图像噪声抑制。通过本文算法对野生动物监测样本库进行实验的平均Pr、Re和F-measure值分别达到了0.4895、0.7321、0.5300,相较于表现性能较好的HC和MC算法在每个评价指标方面分别提高了18.37%、19.53%、19.05%和6.42%、21.99%、8.74%。(3)探索了基于视觉感知的图像渐进式压缩编码算法,解决了WISNs图像压缩无法体现重要区域优先性的问题。本文在图像显著性目标检测结果的基础上,采用位平面提升和混合编码算法对野生动物监测图像进行分层渐进式压缩编码,分别实现了显著性目标区域的无损压缩和背景区域的有损压缩,保证了图像中重要区域信息的重构质量。本文算法在PSNR、SSIM方面的实验结果平均值分别为39.0365d B和0.9014,相较于EZW和DCT算法分别提高了21.11%、14.72%和9.47%、6.25%。(4)探索了基于分布式传输机制的图像数据分配策略,解决了由于WISNs自组织、多跳的传输模式造成的网络资源浪问题。通过对联合信号进行独立编码和联合解码的方法提出了一种显著性目标区域图像和背景区域图像分布式协同传输策略,其中显著性目标区域直接由簇头节点进行传输,而数据量相对较大的背景区域通过在同一传输级的簇内节点之间进行分配,实现了网络资源的合理利用。本文算法在PSNR和SSIM方面,与DCT和EZW相比,分别提高了7.47%、9.06%和16.98%、19.50%;在能量消耗方面,与多跳和单跳传输等单一模式相比,分别降低了29.96%和40.84%。(5)提出了基于改进自编码器的图像自动恢复算法研究,解决了由于外界环境干扰造成的WISNs图像内容缺失问题。本文针对不同区域图像间纹理信息的不同,通过将显著性目标区域和背景区域样本图像分开训练和测试的方法提出了一种基于改进自编码器的WISNs缺失图像自动恢复算法,实现了图像样本中重要缺失信息的自动恢复。实验结果表明,本文算法在PSNR和SSIM方面,相较于SPHIT和EZW算法,分别提升了7.93%、18.15%和7.01%、12.67%,保证了监测数据的可靠性,为后续相关科学研究提供素材保障。综上所述,本文针对大数据量、背景复杂的野外监测图像,提出了一种适用于WISNs的高效编码与传输方法,包括WISNs监测系统的设计、图像显著性目标检测、图像渐进式压缩编码与分布式传输策略以及图像缺失内容的自动恢复,为无线传感器网络在智能信息监测领域的推广提供了理论指导。