论文部分内容阅读
青霉素G是目前生产量最大的β-内酰胺类抗生素,也是半合成青霉素类抗生素的重要原料。传统的提取工艺大多采用溶媒萃取法从发酵液萃取青霉素G,传统工艺在低pH条件下操作,存在着青霉素降解严重、生产能耗大、萃取设备昂贵、溶剂回收困难等缺点。液膜分离技术作为一种新型的分离纯化手段,可实现萃取/反萃取过程耦合,具有传质效率高、选择性好的优点,可以克服传统萃取工艺中的不足,液膜技术已成为青霉素分离领域的一个研究热点。本文分别采用大块液膜(BLM)和中空纤维更新液膜(HFRLM)技术,对模拟青霉素发酵液进行分离纯化。在最佳条件下,进行了HFRLM提取青霉素的工业应用小试研究。建立了适用于萃取过程的青霉素G的HPLC分析方法,结果表明在0.02M磷酸二氢钾溶液(pH=3.5):甲醇=38:62的流动相条件下青霉素G保留时间短,色谱峰形尖锐,重复性好,不受缓冲盐和有机溶剂的干扰。基于青霉素G两种不同的萃取机理—物理萃取和反应萃取,分别考察了载体浓度、稀释剂、温度、pH、料液浓度等不同操作条件对萃取分配系数的影响,并针对不同萃取剂的萃取机理进行了探讨。其中物理萃取在较低的pH下具有较高的分配系数,但青霉素降解严重。反应萃取在较高的pH范围内(5-7)仍具有良好的萃取效果,可以在常温下操作。通过大块液膜实验验证了液膜过程在青霉素G提取过程中的可行性和优势,进行了中空纤维更新液膜技术在青霉素G提取过程中的实验研究,考察了操作方式、两相流速、两相pH、载体浓度、料液初始浓度、相比等操作条件对传质系数的影响。改变料液侧的流速有利于传质;两相pH差值是青霉素G提取过程的主要传质推动力;HFRLM传质系数随载体浓度的增大而增大;HFRLM的传质通量高于支撑液膜的传质通量,一定程度上可以超过膜萃取的传质通量。HFRLM对中高浓度50000u青霉素G料液的提取和浓缩效果良好,料液去除率99.2%,反萃收率达到92.2%。处理较高浓度(100000u)料液,浓缩比仍可达到3.5。采用串级操作处理高浓度(100000u)青霉素的模拟工艺小试研究,最终料液相去除率达到88.76%,由于料液中大量晶体析出,反萃侧的收率仅有62.59%。结果表明,中空纤维更新液膜技术应用于青霉素G的提取,可以克服传统提取工艺的缺陷,大大提高分离效率,在生物制品的分离纯化领域具有广阔的发展前景。