含铜铁水喷吹CO2脱碳研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:fh2039
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着经济的发展,全世界精铜消费逐渐增加,铜熔炼产出的铜渣大量积累,而铜渣中含有大量有害元素,如果不及时对其进行处理,将会对土地资源造成不可逆的破坏,考虑到铜渣中铁含量通常在40%以上、铜含量在0.5%以上,特别是富氧低吹渣含铜较高,而我国铁矿石开采品位在20%左右,因此铜渣合理应用具有重要意义。
  目前,铜渣利用的主要方向为单一的提取渣中的铁元素或铜元素,方法主要有选矿法和火法贫化。本课题组提出了利用铜渣还原铁水冶炼含铜抗菌不锈钢的新工艺。即先适度贫化熔融铜渣,经渣锍分离后回收锍中铜及伴生贵金属,再使用碳质还原剂深度还原贫化后渣,得到含铜铁水脱碳合金化后直接得到含铜抗菌不锈钢,这工艺中脱碳成为关键步骤之一。
  本论文对向铁水中喷吹CO2脱碳的热力学、动力学进行了分析,考察了反应温度、气体流量、反应时间、CO2中Ar分压和O2分压对脱碳过程的影响;并采用化学分析、XRD、SEM、ICP、碳硫分析仪等手段对脱碳反应后的铁水进行了分析,得出以下结论:
  (1)CO2作为脱碳剂与实验成分铁水作用的过程,理论上当CO2利用率为80%时,铁水降温,体系表现为吸热,CO2与O2混合摩尔比例为5.4∶1时可以满足自热。
  (2)从热力学上计算出了pCO与w[C]和w[Cr]的关系式lg(pCO/Pθ)=-12625.23/T+8.45-0.25lg(w[Cr]/wθ)+lg(w[C]/wθ),当平衡温度相同时,固定Cr含量,pCO随着铁水中碳含量减低而降低,当碳含量为0.35%时,C和Cr选择性氧化温度为1876.23K。当碳含量较低时,如在0.05%时,温度高于2173K,工业中此温度难以满足,可以通过降低pCO达到目标,当pCO降低到17.78%时,即lg(pCO/pθ)=-0.75时,碳铬选择性氧化温度可以降低到1923K。
  (3)由单因素实验得出含铜铁水脱碳的适宜条件为:反应温度1923K,反应时间为60min,CO2-Ar混合喷吹流量为670ml/min,Ar分压为30%,此时,w[C]降低到0.066%,使w[Cr]为12.32%,w[Cu]为3.09%,该条件下所得结果更趋近于30Cr13Cu3的成分,是本实验的最优条件。
  (4)由于Rln(w[C]/w[C]0)>Rw[C]0-w[C],故脱碳反应受传质控制,CO2气体与铁水中[C]反应为表观零级反应,反应活化能Ea为30.85kJ/mol,小于150k J/mol,指前因子A为0.00461。脱碳速率与铁水中碳含量有关系,基本以0.5%为分界线,碳含量高于该值时,脱碳速率基本不变,为0.0404%/min,小于0.5%后脱碳速率下降,脱碳难度增加。
  (5)对于铁水中的铬,高温时有利于保铬,大流量(如920ml/min)会加大铬的损失,对于CO2-Ar体系,提高Ar分压有利于降低Cr的烧损。对于CO2-O2体系,降低O2分压有利于降低Cr的烧损,但会增加热量消耗。对于铁水中的铜,不会被CO2氧化。
  (6)利用热力学软件Factsage进行计算,得出了最有利于脱磷的条件为:造渣量为铁水质量的10%,其中w(Fe2O3)=30%,w(CaO)=52.5%,w(SiO2)=17.5%,w(CaF2)=10%·w(CaO),反应温度为1673K。
其他文献
随着世界经济以及海上贸易的快速推进,以原油船、集装箱船为代表的大型船舶需求量逐年加大,船舶制造也因此向着大型化方向发展。为适应船舶的大型化发展趋势,提高船舶建造效率迫在眉睫。而焊接作为建造船舶过程中的重要工序,其工时约占建造船舶总工时的40%,因此通过大线能量焊接进而提高焊接效率、减少焊接成本的技术获得了广泛的应用。但大线能量焊接会导致奥氏体晶粒显著粗化,形成侧板条铁索体和上贝氏体等脆性组织,导致焊接接头的韧性严重恶化。通过氧化物冶金技术改善焊接接头力学性能成为解决这一棘手问题的关键。Ti由于对焊缝金属中
细菌在矿物面的吸附是生物氧化中的关键步骤之一,细菌主要借助EPS层在矿物表面吸附,本文研究EPS层中两种关键物质(葡萄糖、葡萄糖酸)在主要载金矿物(黄铁矿、毒砂)表面的吸附行为,为研究EPS在矿物表面吸附和细菌在矿物表面的吸附规律提供理论基础。
  本文主要通过密度泛函理论计算、分子动力学计算、吸附实验和电化学实验来研究四种吸附组合的吸附行为。结果显示,密度泛函理论计算可知:在葡萄糖、葡萄糖酸与黄铁矿、毒砂晶体相接触时,有部分电子从黄铁矿、毒砂晶体转移到葡萄糖、葡萄糖酸分子上;葡萄糖以醛基端吸附于黄
尖晶石型LiNi0.5Mn1.5O4是一种高能量密度锂离子电池正极材料,并且其4.7V高电压的特征及良好的综合电化学性能使其具备其它正极材料无法相比的优点。因此有必要对尖晶石LiNi0.5Mn1.5O4材料开展深入的研究,促使其早日进入商业化的应用,以提高动力锂离子电池的性能。
  本文对LiNi0.45Cr0.1Mn1.45O4与LiNi0.45Fe0.1Mn1.45O4材料的性能进行了研究。探究了焙烧温度对LiNi0.45Cr0.1Mn1.45O4材料结构、粒度、组织形貌以及电化学性能的影响,并
相对于其他锂离子电池正极材料,高电压尖晶石结构LiNi0.5Mn1.5O4(LNMO)具有工作电压高、能量密度大等显著特点,是一种极具应用前景的锂离子电池正极材料。然而其的循环性能有待进一步提高,尤其是高温下的循环性能较差。一个主要原因是电解液对电极材料的化学作用使过渡金属溶解。目前最有效的方法之一是在LNMO表面进行包覆,为改善其循环性能,尤其是高温下的循环性能。本文研究了LiAlTiO4(LATO)包覆对LNMO形貌、结构和电化学性能的影响。
  首先,研究了固相合成法中不同热处理机制对LATO
螺旋磁场是旋转磁场和行波磁场空间上的叠加,螺旋电磁搅拌结合了两者特点,既能产生横截面上的切向力,又能产生纵截面上的轴向力,两者的合力在空间上有一定夹角,使钢液在更大范围内流动,搅拌更加充分,均匀液相穴内温度,改善凝固组织,扩大等轴晶区,减小中心偏析。
  本文设计了一种新型复合式螺旋电磁搅拌装置,以450×370mm大方坯为研究对象,采用数值模拟的方法,研究了结晶器螺旋电磁搅拌器磁感应强度和电磁力的分布规律。采用VOF模型,研究了三种螺旋电磁搅拌形式下的液面变形。与旋转电磁搅拌对比得出最佳的搅拌方式
氧化铝陶瓷材料因其具有高强度、高硬度、耐高温、耐腐蚀等优良性能以及非常高的化学稳定性,因此成为应用最广,需求量最大的氧化物陶瓷材料。但是在使用中氧化铝陶瓷也具有高脆性、抗热震性能差、均匀性差以及断裂韧性差等陶瓷材料的共性问题。目前已有多种方法来改善陶瓷材料的性能;例如,改变烧结方法、第二相增韧、添加颗粒或是晶须材料改性、金属包覆改性等。但是这些方法在提高Al2O3陶瓷材料性能的同时也带来了一些其它问题,如添加颗粒、纤维、晶须可以提高抗热震性能却使脆性增加,以及引入第二相等都会使Al2O3陶瓷纯度降低从而影
金属熔体中的异相颗粒与金属材料的性能和质量直接相关。在冶炼过程中,金属熔体中的夹杂物颗粒不可能被全部去除,特别是小直径的异相颗粒很难被去除。根据弥散强化理论,金属熔体中均匀分布的、粒径合适的异相颗粒会对金属材料性能起到强化作用。因此如何控制金属熔体中的异相颗粒,使其在钢液中弥散均匀分布,是利用异相颗粒提高金属材料性能的关键。本文提出了利用电磁场控制金属熔体中异相颗粒运动和分布的方法。利用ANSYS和FLUENT软件解决了电磁搅拌作用下磁场和流场的耦合问题。采用区域单位面积颗粒数量分布方差的衡量方法,研究了
电磁场在钢铁冶金中的应用越来越受到重视,电磁搅拌、电炉、感应炉等冶炼手段均存在电磁场。电磁场对耐火材料的使用寿命及钢中夹杂物均产生一定影响。因此,研究电磁场下熔渣/熔钢与耐火材料的相互作用,具有重要意义。
  本文选用的是目前钢铁冶金中应用最为广泛的三种MgO基耐火材料,即镁铝尖晶石质耐火材料、镁钙质耐火材料、镁碳耐火材料。配置R=4的碱性渣、选用GCr15SiMo钢,将它们放入三种MgO基耐火材料坩埚后,利用电阻炉(非电磁场)、多因素抗渣炉(电磁场、真空、惰性气氛N2)、中频感应炉(空气气氛、电磁
二氧化锆因具有耐高温、耐磨损、耐腐蚀等优异性能而被广泛应用于耐火材料、陶瓷增韧、催化剂载体、传感器和装饰材料等领域。纳米二氧化锆粉体的粒径、分散性对其后期烧结性能影响较大,进而影响锆制品的性能。因此,制备出粒径细小均匀、活性高、分散性优良的纳米二氧化锆粉体具有重要意义。
  经分析粉体制备方法的优缺点后,本文采用均相沉淀法和水热法两种方法来制备纳米二氧化锆粉体。
  采用均相沉淀法制备纳米二氧化锆粉体,探讨了硝酸锆和尿素摩尔比、Zr4+浓度、反应温度、分散剂、前驱体溶液电荷控制等因素对粉体制备
氧化铝粉体因其具有高熔点、高硬度,良好的导热、绝缘、耐磨、耐腐蚀等性能,被广泛应用于精细陶瓷、微电子、高分子复合材料、漆料等领域。但是在氧化铝粉体应用过程中还存在着易团聚,水性体系中的分散稳定性差,与有机高聚物基体相容性差等问题,影响氧化铝粉体的应用性能。
  为了解决氧化铝粉体应用中存在的问题,对其表面改性是一种有效的手段。目前,氧化铝粉体表面改性主要分为无机包覆与有机改性两种。本论文针对氧化铝粉体易团聚、水性体系分散稳定性差的问题,采用无机改性中的二氧化硅包覆法对其改性,以提升其在水性体系分散稳