【摘 要】
:
分离式霍普金森压杆(SHPB)实验是目前广泛用于研究结构的抗冲击性和材料在高应变率下的动态力学行为的经典实验方法之一。本文采用SHPB实验方法对玻璃钢纤维薄壁管(GFRP管)和柔性基PDMS进行冲击压缩实验,分别从结构和材料的角度对GFRP管的抗冲击性能和高应变率下柔性基PDMS的动态力学行为进行分析。本文采用SHPB实验,研究了GFRP管在低速冲击载荷作用下的抗冲击性能,探讨了GFRP管的截面形
论文部分内容阅读
分离式霍普金森压杆(SHPB)实验是目前广泛用于研究结构的抗冲击性和材料在高应变率下的动态力学行为的经典实验方法之一。本文采用SHPB实验方法对玻璃钢纤维薄壁管(GFRP管)和柔性基PDMS进行冲击压缩实验,分别从结构和材料的角度对GFRP管的抗冲击性能和高应变率下柔性基PDMS的动态力学行为进行分析。本文采用SHPB实验,研究了GFRP管在低速冲击载荷作用下的抗冲击性能,探讨了GFRP管的截面形状和壁厚对其冲击破坏模式、动态应力-应变曲线和比吸能值(SEA)的影响。结果表明:GFRP圆管的动态切线模量较方管的大,同壁厚的圆管的抗冲击性能较方管好;方管随壁厚的适当增加,抗冲击性能也增加。通过综合分析抗冲击性能评价参数,发现方管随壁厚的略微增加,吸能性能增强。与铝合金圆管相比,在相同实验条件下,GFRP圆管的动态切线模量和冲击应力峰值较铝合金圆管大,峰值应变值较铝合金圆管小,比吸能值较铝合金圆管的大,GFRP管的抗冲击性能也较铝合金圆管好。其次,本文采用SHPB实验和有限元模拟方法对柔性基PDMS材料的动态力学性能及动态响应进行探究。对应变率效应、厚度影响、动态变形过程、应力波速以及速度/位移/加速度响应等进行分析。结果表明,柔性基PDMS的应力-应变曲线具有一定的应力滞回区。其极限强度及相应应变、波速、切线模量以及速度/位移/加速度响应等均表现出显著的应变率效应。整个应变过程中,波速具有减小/增加/减小三个阶段。另外,柔性PDMS的动态响应与传统固体材料的动态响应有很大的不同。响应初期,不同方向的位移、速度和加速度响应均较弱;响应中期,各方向响应明显增大。加载方向上的速度响应在较短时间内达到峰值,随后进入平台阶段;非加载方向上速度波形具有明显的振荡现象。加载方向上加速度响应在响应中期逐渐趋于稳定。
其他文献
2004年以来,中央一号文件持续16年聚焦于“三农问题”,伴随着一系列强农、惠农、富农政策的落地,我国农业产业发展进入空前发展时期,种植业作为其中的重要组成部分也表现出稳
大量研究表明超临界流体技术是制备药物微细颗粒的一种有效的技术,但受现有设备,尤其受设备中喷嘴不能满足大量化生产的限制,该技术目前尚处于实验室研究阶段,无法实现工业化
碳点(Carbon dots,CDs)由于具有尺寸小、可调的光致发光特性、低毒性、优异的稳定性和生物相容性等特点,在生物医学领域具有广泛的应用。我们通过水热法成功地制备了荧光CDs,
上转换材料由于具有发射峰窄,高耐光性和低背景自发荧光等独特优势拥有在很多领域得到广泛应用的巨大优势。利用最节能环保、易操作的方法合成具有高效上转换荧光的稀土掺杂
快速成型技术也被称为3D打印技术,已经逐渐成为公认的第三次工业革命的标志。美国的ASTM协会给快速成型技术作了如下的定义:利用逐层累加的方法把打印材料进行拼接加工,它和
微纳米热压印技术以其快速、高效、低耗、模具简单等优点成为微结构成型中最受欢迎的制造技术。该技术的研究通常是采用数值模拟和实验技术两种方法,本文主要从数值模拟的角度将对该技术从非晶聚合物的材料模型、毛细成形机理等进行研究。由于微纳米热压印通常是在聚合物玻璃化温度以上进行,此时聚合物既具有流体的特征,又具有弹性的特征,材料的变形行为极其复杂,选择恰当描述材料行为的本构模型将成为影响数值模拟预测正确的一
随着计算机科学和控制科学的发展,纺织机械设备规模与复杂程度迅速增加。一方面,设备中的某些故障可能造成设备的失效甚至灾难性后果;另一方面,企业为了设备的维修增加了很多
随着机器学习与人工智能的发展,基于数据驱动的建模方法在没有系统过程先验知识的情况下也可以获得复杂系统的精确输出,基于系统辨识理论开展了发动机传感器故障诊断方法的研
利用力学性能测试、导电性能测试、金相显微观察、X射线衍射仪、带有能谱仪和背散射电子探测装置的扫描电子显微镜、透射电子显微镜以及三维原子探针分析技术等手段,研究了 C
西藏地区经济发展迅速,人们对于室内热舒适要求变高,该地区冬天寒冷需要供暖,而夏天凉爽不需要制冷,因此建筑采暖能耗和碳排放也会随之越来越高。增加的碳排放会加剧日益严重