Cn中有界星形圆型域上的螺形映照

来源 :河南大学 | 被引量 : 0次 | 上传用户:blueseller
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周知,在多复变几何函数论中,星形映照和螺形映照是我们的主要研究对象之一,而且,双全纯映照的增长掩盖定理是多复变几何函数论的重要组成部分.本文主要研究多复变数Cn中有界星形圆型域Ω上的螺形映照,给出了螺形映照的参数表示,利用螺形映照的参数表示,得到了Cn中有界星形圆型域Ω上螺形映照的增长掩盖定理.   最后,我们给出了星形映照和螺形映照的等价刻画.   有界星形圆型域是一类相当广泛的域,它包括复椭球和四类典型域.因此本文的结果是对已有结论的深入研究和推广,从而使我们对有界星形圆型域,星形映照和螺形映照有了更进一步的认识.  
其他文献
众所周知,随机游动是概率论中的一个重要研究对象.而在随机游动的研究中,随机游动的上确界及超出又是两个重要目标.它们在应用概率的很多领域,诸如排队系统,风险理论,分支过程,无穷
本文对一类非富足全变换半群进行了研究。保序问题是变换半群研究中的热门问题.设Xn={1,2,...,n}, Tn是 Xn上的全变换半群,~A?Xn{1},Xe={x∈Xn:x为偶数1,A为Xn中连续自然数组成
亚纯函数正规族理论是复分析中的一个重要分支,并且目前这一方向的研究仍十分活跃,国内外许多复分析学者都十分关注.本文主要对亚纯函数正规族进行了一些研究,得到了一些有意
随着计算机和我国科学的飞速发展,矩阵作为一种科学研究的工具,其应用越来越广泛.矩阵的分解在矩阵理论研究上和数值计算中有重要的意义.它是将一个矩阵通过变换分解成几个比
本文围绕H.Wilf和D.Zeilberger提出的的超几何级数恒等式机械化方法一Gosper算法所依赖的Gosper方程一般解展开讨论.同时将具体解的表达式与Gosper求和公式结合起来,建立了一
本文主要研究了两种与Fisher-KPP方程有关的传播速度的最优化问题。首先,考虑方程ut=uxx+b(x)u(1-u),X∈(R),这里b(x)是一个(R)上L-周期的非负测度,且.∫[0,L)b(x)dx=(α)L>0。我