【摘 要】
:
过渡金属催化的C-H键官能团化反应不仅可以有效缩短反应步骤,而且具有高原子经济性,是有机合成方法学重要的研究方向之一。因此发展新型C-H键活化策略,直接构建重要有机小分子骨架,具有潜在的工业应用价值。本论文主要发展了三种不同的过渡金属催化剂体系,实现不同类型C-C成键反应,从而合成不同类别天然产物、生物活性分子和药物分子中的骨架。涉及的反应类型包括氧化偶联反应、苄基化反应、二氟甲基化反应。首先,我
论文部分内容阅读
过渡金属催化的C-H键官能团化反应不仅可以有效缩短反应步骤,而且具有高原子经济性,是有机合成方法学重要的研究方向之一。因此发展新型C-H键活化策略,直接构建重要有机小分子骨架,具有潜在的工业应用价值。本论文主要发展了三种不同的过渡金属催化剂体系,实现不同类型C-C成键反应,从而合成不同类别天然产物、生物活性分子和药物分子中的骨架。涉及的反应类型包括氧化偶联反应、苄基化反应、二氟甲基化反应。首先,我们发展了铑催化的丙烯酸与炔烃的氧化偶联反应,一步构建一类天然产物以及具有生物活性的中间体中常见的核心骨架——a-吡喃酮。该策略极大改善了这类反应的官能团兼容性,为合成这类化合物提供了一种高效的方法。其次,我们开发了一种银催化乙酰苯胺的苄基化反应,提供一种操作简单、实用的策略合成各类三苯甲烷类化合物。这类分子通常是有机染料,超分子结构以及药物的核心骨架,具有潜在的应用前景。最后,我们发现以廉价的铁为催化剂,可解决芳醛类化合物区域选择性二氟乙酸乙酯化反应位点难以控制的问题,首次实现芳醛类化合物的对位二氟乙酸乙酯化反应。为药物先导化合物的发现以及新药研制提供了一种简洁的方法。上述三种合成策略均是基于过渡金属催化的C-C键的合成反应,为扩宽过渡金属催化偶联反应类型做出独特贡献。产物均经过共振氢谱、共振碳谱、高分辨质谱的表征。
其他文献
矩阵奇异值分解的计算是数值计算领域的重要问题.矩阵的奇异值分解是计算矩阵的秩,最佳秩k逼近,矩阵的伪逆以及求解不适定的最小二乘问题的重要手段.在应用领域,例如图像压缩
研究背景:缺氧性肺动脉高压(Hypoxia-induced Pulmonary Hypertension,HPH)是一种由于长期慢性缺氧刺激导致的呼吸系统疾病。其主要特征为低氧性肺动脉收缩、肺动脉结构重塑,以
随着社会化大生产的发展,企业面临着复杂多变的社会环境和日新月异的市场竞争,为了在这种大环境中生存,企业就必须运用科学的管理思想和管理方法来提高自身实力和管理水平,使自己在激烈的市场竞争中处于不败之地。而全面预算管理就是一种行之有效的预算管理方法,是以企业的具体目标为起点,以战略管理为手段,通过整合企业内部的各项资源来提升企业的市场竞争力和社会影响力。20世纪80年代初,中国开始引进了西方的管理会计
背景:已有大量基础和临床试验表明,干细胞移植对提高心肌梗死后心脏功能是有效的。BMSCs(Bone marrow mesenchymal stem cells,BMSCs,骨髓间充质干细胞)作为成体干细胞的一种
镁合金与聚乳酸(Mg/PLA)的复合材料,可实现两组元在力学性能、降解产物酸碱性、降解难易程度和降解周期等方面互补,具有良好的生物相容性、可降解性、力学相容性等特点,在作为可降解植入性骨折固定器械领域具有广阔的应用前景。考虑到植入人体的固定器械在不同服役阶段将受到不同生理应力的作用,因此,研究Mg/PLA复合材料在模拟生理应力环境中的分阶降解行为可以预测可降解骨折固定器械在植入人体后的性能变化。本
智能响应性高分子,亦称为刺激响应性聚合物,已被广泛应用于人们的日常生活中,如化学传感、药物输送等,它能够针对各种类型的刺激如pH、温度、离子强度、光、电场和磁场等做出
Toll样受体(TLRs)是最早发现的哺乳动物天然免疫模式识别受体(PRRs)家族,也是研究最广泛的模式识别受体,其研究极大地丰富了免疫生物学内涵。TLRs和其它PRRs识别病原相关分子模式(PAMPs),可以激活细胞信号通路,产生各种炎症细胞因子,趋化因子和Ⅰ型干扰素(IFNs),从而迅速触发一系列抗微生物免疫反应。本文主要研究鸡TLR5(chTLR5)及其信号通路接头蛋白MyD88(chMyD
针对稠油热力开采工况中,水泥石承受的高温环境易导致固井水泥环发生开裂,强度衰退,进一步可能造成固井水泥环层间封隔失效的问题。本文从固井用水泥基材料的角度出发,采用耐
电解水制氢是一种绿色可持续的产氢工艺,有助于推动绿色能源经济的快速发展。该工艺制氢的高效性依托于高性能电催化剂的发展。钼基材料具有类铂的催化行为,因此被当作是一类非常具有应用潜力的析氢电催化剂。本论文围绕介孔钼基纳米材料的结构设计、界面优化及表面电子调控等方面展开了较为系统的研究,并探讨了这些材料在电催化析氢反应(Hydrogen Evolution Reaction,HER)中的应用潜力。主要研
贵金属铂(Pt)作为高效电催化剂普遍应用于燃料电池,但是Pt在地球上的含量稀少,价格昂贵,限制了燃料电池的商业性发展。Pt基纳米材料由贵金属Pt和另一种金属共同组成,不仅可以