论文部分内容阅读
板式换热器流道结构复杂,其内部的流动可能具有很强的各向异性,而大多数学者选用的RANS湍流模型对各向异性湍流描述得不够准确。为此,本文建立了完整结构的人字形板式换热器几何模型,采用可以描述湍流各向异性的LES湍流模型对其进行数值模拟。主要工作如下: (1)人字形板式换热器数值模拟模型的适用性研究。分别采用标准k-ε湍流模型(RANS模型中的一种)、LES湍流模型对单流道55°人字形板式换热器的流动进行数值模拟,并与PIV实验结果进行比较。发现标准k-ε湍流模型下的计算结果与PIV实验结果吻合较差,LES湍流模型下的计算结果与PIV实验结果吻合较好。说明对于板式换热器中这种具有很强各向异性特点的流动,需要抛弃RANS湍流模型,采用LES模型,为以后板式换热器数值模拟研究的模型选择提供依据。 (2)人字形板式换热器内流动和传热特性研究。采用LES湍流模型分别对完整结构的25°人字形板式换热器和55°人字形板式换热器的三流道模型进行数值模拟,对流型、速度、热通量、速度脉动、湍流动能、温度、温度脉动、热流密度进行了分析。发现换热面上热通量的大小与换热面附近流体的速度有关,平行于换热面的速度和垂直于换热面的速度越大,换热面上热通量越大。同时,发现板式换热器内的湍流动能、均方根脉动温度是由X、Y两个方向的均方根脉动速度决定。为进一步提高板式换热器的热通量、研究其传热机理打好了基础。 (3)波纹倾角对板式换热器流动和传热的影响研究。将25°人字形板式换热器和55°人字形板式换热器的大涡模拟结果进行了对比。当波纹倾角为25°时,只有少量流体在波纹交接处改变方向沿Y轴曲折流动,流体速度主要集中在0.5~0.8 m·s-1之间;当波纹倾角为55°时,沿Y轴曲折流动的流体增加,流体速度主要集中在1~1.4 m·s-1之间。随着波纹倾角β的增大,X、Y、Z三个方向的均方根脉动速度、湍流动能、均方根脉动温度也增大,换热器总压降增加,但同时对流换热系数增大。