论文部分内容阅读
2μm相干激光测风雷达近年来国际上研究热点之一。2μm波段激光处于大气窗口,人眼安全,既有很好的大气透过率,又有很好的后向散射,是理想的激光测风雷达光源。在相干探测体制中,信号处理相对简单可靠,但这些优点均是建立在高稳定高功率2μm激光器基础上实现的。本论文利用2μmInGaAs半导体激光器,通过高精度温度和电流控制实现单纵模输出,采用自聚焦透镜将发散角为25°×50°的上述激光耦合到单模光纤,经声光移频、在线衰减器、探测器等构成2μm全光纤外差接收机模拟实验系统,研究确定最佳本振光功率,提高系统外差效率。实验确定了InGaAs半导体激光器输出波长与工作电流和温度的关系。InGaAs半导体激光器输出波长随温度和工作电流增加而增加。在18°C时,小电流易出现波长湮没现象,即不产生输出波长;在20°C时,大工作电流易出现多模现象。温度需要控制在19°C时,最佳工作电流范围为220mA-250mA之间,半导体激光器稳定输出单纵模,波长为2.106μm,束散角为25°×50°。根据自聚焦透镜传播理论和半导体激光器光束角参数,利用ZEMAX软件设计自聚焦透镜最佳长度为7.7mm,实现了2μmInGaAs半导体激光器与单模光纤的耦合。耦合效率理论值约为23%。实验测得其耦合效率约为10%,透镜端面与光纤端面有平行错位,透镜耦合的光就很难进入光纤,所以导致探测器接收光功率比较低。理论讨论了影响外差探测效率的主要因素。外差效率随着空间准直角失配和平行偏移量的增加会持续降低,当空间准直角到达52.3mrad时,外差效率下降到0.2。本振光功率对外差效率影响也很大,对于温度300K,负载电阻为50?的PIN硅光电二极管,其理论计算最佳本振光功率为0.5mW,对于内阻1M?,负载电阻1M?的光导探测器,在恒压偏置时其理论计算最佳本振光功率在2.3mW附近,恒流偏置时其理论计算最佳本振光功率在2.8mW附近。初步建立2μm全光纤激光外差接收机模拟实验系统,获得稳定的2μm半导体激光器100MHz外差中频信号。在最佳本振光功率实验中,获得了本振光功率为0.010mW,0.032mW,0.100mW,0.316mW,0.600mW,1.000mW下的外差中频信号,实验结果的拟合曲线与理论计算结果比较一致。