论文部分内容阅读
太阳风是从太阳日冕层经过加速射出,以200-800km/s运动的带电粒子流。快速变化的太阳风严重影响着地球的空间环境,如地磁暴、电离层暴等。这些现象严重干扰无线通信、地面相关设施等。在人类航天活动方面,太阳风对航天航空探索有着显著的影响。为了探索太阳风对空间环境的影响;对卫星、无线通信产生的干扰;对地面电力网、管道和其它大型结构的破坏,本课题通过对太阳风形成、运动、传输等方面的研究,建立太阳风数学物理模型,进行太阳风仿真模拟实验,发现太阳风的活动与运动规律。通过分析和探索太阳风对卫星通讯系统、地面相关设施等产生的各种影响因素,以期减少太阳风对地球和人类带来的灾难,建立相关的预警和监测系统。太阳风系统仿真是一个涉及大气物理学、地球探测与信息技术、天文学、仿真学、高性能计算、数据存储技术、计算机网络技术、高级程序设计等多个领域的交叉前沿课题。本课题首先研究太阳风、现代仿真技术、Enzo宇宙进化仿真等相关理论。其次,建立数学物理模型和仿真模型。第三,构建太阳风系统仿真体系。最后,探索与研究太阳风的活动与运动规律,建立相关的预警和监测系统。本课题建立了太阳风粒子系统模型,解决了太阳风粒子系统仿真驱动;构建太阳风系统仿真体系架构,分析研究了太阳风系统仿真关键技术;建立了太阳风粒子系统和地磁系统仿真器;首次提出了基于CPU+GPU异构计算分布式云仿真器设计理念;建立了仿真的任务调度模型;建立了太阳风和太阳高能粒子第三级的科学数据数据映射模型。太阳风粒子系统模型是太阳风系统仿真需要解决的关键技术之一,根据太阳风固有的属性,建立适用于本系统仿真太阳风粒子系统驱动方程数学物理模型,是需要研究的首要内容。通过研究太阳风的质子、带电、气态等特性,基于现有的研究成果,采用数学建模的方式,为太阳风粒子系统建立了基于引力场、电磁场、理想气体等理论的数学物理方程,驱动太阳粒子的机械、电磁和分子热运动,是本课题的研究内容之一。该模型能够有效地解决太阳风粒子系统仿真器的引擎驱动问题,仿真实验结果表明,该模型能够较好地满足数据精度要求。太阳风系统仿真需要借助计算机系统软、硬件来完成,构建太阳风系统仿真体系,是完成太阳风系统仿真需要解决的另一关键问题。太阳风系统仿真与工业控制的仿真有所不同,简单通过MATLAB/Simulink进行实现不太适合,其仿真与Enzo宇宙进化仿真有所类似。为了完成太阳风系统仿真的研发,通过研究现代计算机仿真技术及其所涉及的高性能计算、超大规模数据存储和仿真终端的异构计算等,首次提出并建立了太阳风仿真体系所需的仿真系统架构。系统架构所涉及的高性能计算采用了基于网络通讯的远程计算云,存储采用了基于网络链路的云存储等模型设计,为研发该系统提供了基础框架,其涉及的硬件异构现象,通过软件设计得到了有效的控制,其松耦合的设计理念为项目研发进度控制提供了异步开发策略,较好地解决了项目进度差异带来的项目开发时延,对其他类似项目的研发提供了项目级控制参考策略。在仿真器的设计中,为了减轻仿真器的压力和超大规模终端仿真的需求,采用分布式渲染技术,利用CPU+GPU异构计算技术,首次提出并研发了基于RIA的云仿真客户端,分别实现了太阳风粒子系统和大地电磁云客户端仿真器。该仿真器能够提供在单台计算机上完成多仿真器同时运行的实时仿真,也提供分离在各个节点独立仿真的运行模式,该方法具有一定的独创性,为基于CPU+GPU异构计算分布式云仿真器的设计提供了一定的参考。在太阳风系统仿真中,为了解决在业务量增长时,能够充分地利用计算系统资源,采用将系统任务进行分解的方法,有机地将任务分配到各个计算单元进行计算,因此研究太阳风系统仿真中的任务调度模型是本课题的内容之一。在研究异构环境下太阳风仿真任务调度NP问题研究中,利用仿真任务可分解的特性,在现有成果和理论上通过修正和更新任务动态分解调度模型,解决了高性能计算仿真中任务的调度问题。通过对任务调度模型优化和将子任务分解为2层m叉树,引入复杂度计算能力比,较好地解决了仿真中负载平衡和资源优化问题,为子任务可分解异构环境任务调度问题的研究提供了参考。为了能够快速获得第三级太阳风粒子可分析处理的结构化数据,采用将数据映射到内存和语言集成查询技术,以解决数据的完整映射和快速访问。首次提出并设计数据映射模型,将采用PDS数据标签的数据产品分别映射到模型的值域和属性域,解决本地或网络数据内存映射问题。采用双倍缓冲和贝塞尔插值技术对数据能谱进行了实时绘制。结果表明该模型具有高效性、完备性和高吻合度。该模型能够较好地解决异构数据快速结构化数据访问时数据源动力不足问题,为处理和分析太阳高能粒子的频谱、成份和通量及随时间、空间变化的分布特征等提供了基础。